Back to Search Start Over

A single-electrode, dual-potential ferrocene-PNA biosensor for the detection of DNA.

Authors :
Hüsken N
Gebala M
Schuhmann W
Metzler-Nolte N
Source :
Chembiochem : a European journal of chemical biology [Chembiochem] 2010 Aug 16; Vol. 11 (12), pp. 1754-61.
Publication Year :
2010

Abstract

A Fc-PNA biosensor (Fc: ferrocenyl, C(10)H(9)Fe) was designed by using two electrochemically distinguishable recognition elements with different molecular information at a single electrode. Two Fc-PNA capture probes were therefore synthesized by N-terminal labeling different dodecamer PNA sequences with different ferrocene derivatives by click chemistry. Each of the two strands was thereby tethered with one specific ferrocene derivative. The two capture probes revealed quasi-reversible redox processes of the Fc(0/+) redox couple with a significant difference in their electrochemical half-wave potentials of Delta E(1/2)=160 mV. A carefully designed biosensor interface, consisting of a ternary self-assembled monolayer (SAM) of the two C-terminal cysteine-tethered Fc-PNA capture probes and 6-mercaptohexanol, was electrochemically investigated by square wave (SWV) and cyclic voltammetry (CV). The biosensor properties of this interface were analyzed by studying the interaction with DNA sequences that were complementary to either of the two capture probes by SWV. Based on distinct changes in both peak current and potential, a parallel identification of these two DNA sequences was successful with one interface design. Moreover, the primary electrochemical response could be converted by a simple mathematical analysis into a clear-cut electrochemical signal about the hybridization event. The discrimination of single-nucleotide polymorphism (SNP) was proven with a chosen single-mismatch DNA sequence. Furthermore, experiments with crude bacterial RNA confirm the principal suitability of this dual-potential sensor under real-life conditions.

Details

Language :
English
ISSN :
1439-7633
Volume :
11
Issue :
12
Database :
MEDLINE
Journal :
Chembiochem : a European journal of chemical biology
Publication Type :
Academic Journal
Accession number :
20602405
Full Text :
https://doi.org/10.1002/cbic.200900748