Back to Search
Start Over
Involvement of cell shape and flagella in the bacterial retention during percolation of contaminated water through soil columns in tropical region.
Involvement of cell shape and flagella in the bacterial retention during percolation of contaminated water through soil columns in tropical region.
- Source :
-
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering [J Environ Sci Health A Tox Hazard Subst Environ Eng] 2010 Sep; Vol. 45 (11), pp. 1297-306. - Publication Year :
- 2010
-
Abstract
- Microorganisms' retention in soil contributes to the natural purification of groundwater. Bacteria found in groundwater are generally of various shapes. The aim of this study was to assess the importance of cell shape and flagella in bacterial retention during polluted water percolation through two soil columns CA and CB, in the equatorial region in Central Africa. Percolation tests were carried out using different water loads samples which were contaminated by Escherichia coli (straight rods, peritrichous flagella), Vibrio parahaemolyticus (rods bacteria, polar flagella), and Staphylococcus saprophyticus (spherical, free-flagellum). It has been noted that showed that through soil column CA, the mean values of cells retention ratios (T(R)) varied with bacteria species considered, and from one applied water load sample to another. E. coli T(R) and that of S. saprophyticus were not significantly different (P> 0.05) for the two soil columns. V. parahaemolyticus T(R) significantly differed from that of E. coli and S. saprophyticus through soil column CA (P< 0.01) when the highest water load was applied, and through soil column CB (P< 0.05) for each of water load applied. A relative hierarchical arrangement of retained cells based on the T(R) showed that V. parahaemolyticus was less retained through the 2 soil columns. S. saprophyticus in most cases was more retained than others. The physical properties of the bacterial cell must be taken into consideration when evaluating the transfer of bacteriological pollutants towards groundwater.
- Subjects :
- Bacteria chemistry
Bacteria metabolism
Escherichia coli chemistry
Escherichia coli cytology
Escherichia coli metabolism
Flagella chemistry
Flagella metabolism
Soil Microbiology
Staphylococcus chemistry
Staphylococcus cytology
Staphylococcus metabolism
Vibrio chemistry
Vibrio cytology
Vibrio metabolism
Water Pollutants chemistry
Water Pollutants metabolism
Bacteria cytology
Water Pollutants analysis
Water Purification methods
Subjects
Details
- Language :
- English
- ISSN :
- 1532-4117
- Volume :
- 45
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering
- Publication Type :
- Academic Journal
- Accession number :
- 20658409
- Full Text :
- https://doi.org/10.1080/10934529.2010.500877