Back to Search
Start Over
Expansion and subfunctionalisation of flavonoid 3',5'-hydroxylases in the grapevine lineage.
- Source :
-
BMC genomics [BMC Genomics] 2010 Oct 12; Vol. 11, pp. 562. Date of Electronic Publication: 2010 Oct 12. - Publication Year :
- 2010
-
Abstract
- Background: Flavonoid 3',5'-hydroxylases (F3'5'Hs) and flavonoid 3'-hydroxylases (F3'Hs) competitively control the synthesis of delphinidin and cyanidin, the precursors of blue and red anthocyanins. In most plants, F3'5'H genes are present in low-copy number, but in grapevine they are highly redundant.<br />Results: The first increase in F3'5'H copy number occurred in the progenitor of the eudicot clade at the time of the γ triplication. Further proliferation of F3'5'Hs has occurred in one of the paleologous loci after the separation of Vitaceae from other eurosids, giving rise to 15 paralogues within 650 kb. Twelve reside in 9 tandem blocks of ~35-55 kb that share 91-99% identity. The second paleologous F3'5'H has been maintained as an orphan gene in grapevines, and lacks orthologues in other plants. Duplicate F3'5'Hs have spatially and temporally partitioned expression profiles in grapevine. The orphan F3'5'H copy is highly expressed in vegetative organs. More recent duplicate F3'5'Hs are predominately expressed in berry skins. They differ only slightly in the coding region, but are distinguished in the structure of the promoter. Differences in cis-regulatory sequences of promoter regions are paralleled by temporal specialisation of gene transcription during fruit ripening. Variation in anthocyanin profiles consistently reflects changes in the F3'5'H mRNA pool across different cultivars. More F3'5'H copies are expressed at high levels in grapevine varieties with 93-94% of 3'5'-OH anthocyanins. In grapevines depleted in 3'5'-OH anthocyanins (15-45%), fewer F3'5'H copies are transcribed, and at lower levels. Conversely, only two copies of the gene encoding the competing F3'H enzyme are present in the grape genome; one copy is expressed in both vegetative and reproductive organs at comparable levels among cultivars, while the other is transcriptionally silent.<br />Conclusions: These results suggest that expansion and subfunctionalisation of F3'5'Hs have increased the complexity and diversification of the fruit colour phenotype among red grape varieties.
- Subjects :
- Anthocyanins metabolism
Chromosomes, Plant genetics
Cytochrome P-450 Enzyme System chemistry
Cytochrome P-450 Enzyme System metabolism
Evolution, Molecular
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genes, Duplicate genetics
Genetic Loci genetics
Genetic Variation
Genome, Plant genetics
Multigene Family genetics
Promoter Regions, Genetic genetics
Protein Structure, Tertiary
RNA, Messenger genetics
RNA, Messenger metabolism
Sequence Alignment
Time Factors
Vitis growth & development
Cytochrome P-450 Enzyme System genetics
Phylogeny
Vitis enzymology
Vitis genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1471-2164
- Volume :
- 11
- Database :
- MEDLINE
- Journal :
- BMC genomics
- Publication Type :
- Academic Journal
- Accession number :
- 20939908
- Full Text :
- https://doi.org/10.1186/1471-2164-11-562