Back to Search
Start Over
Reversal of experimental renovascular hypertension restores coronary microvascular function and architecture.
- Source :
-
American journal of hypertension [Am J Hypertens] 2011 Apr; Vol. 24 (4), pp. 458-65. Date of Electronic Publication: 2011 Jan 13. - Publication Year :
- 2011
-
Abstract
- Background: Hypertension (HTN) may lead to left ventricular hypertrophy and vascular dysfunction, which are independent factors for adverse cardiovascular outcomes. We hypothesized that decreased blood pressure by percutaneous transluminal renal angioplasty (PTRA) would improve the function and architecture of coronary microvessels, in association with decreased inflammation and fibrosis.<br />Methods: Three groups of pigs were studied: normal, HTN, and HTN+PTRA. After 6 weeks of renovascular HTN, induced by placing a local-irritant coil in the renal artery, pigs underwent PTRA or sham. Four weeks later multidetector-computed tomography (CT) was used to assess systolic, diastolic, and microvascular function, and responses to adenosine. Microvascular architecture, oxygen sensors, inflammation, and fibrosis were then explored in cardiac tissue.<br />Results: PTRA successfully decreased blood pressure and left ventricular hypertrophy. Basal fractional vascular volume (FVV) was similar among the groups, but its response to adenosine was significantly attenuated in HTN, whereas microvascular permeability (MP) and response to adenosine were greater than normal. Both were restored by PTRA. These were accompanied by increased myocardial expression of hypoxia-inducible factor (HIF)-1α, inflammation, and microvascular remodeling, including increased density of epicardial microvessels (20-200 µm), as well as cardiac diastolic dysfunction, all of which improved by reversal of HTN. However, PTRA only partially decreased myocardial fibrosis.<br />Conclusions: Reversal of early renovascular HTN improved coronary microvascular function and architecture and reversed myocardial hypertrophy and diastolic dysfunction, in association with decreased levels of myocardial ischemia and inflammation markers, underscoring the benefits of blood pressure normalization for preservation of cardiovascular function and structure.
- Subjects :
- Angioplasty
Animals
Capillary Permeability
Female
Hypertension, Renovascular therapy
Hypertrophy, Left Ventricular physiopathology
Hypertrophy, Left Ventricular prevention & control
Hypoxia-Inducible Factor 1, alpha Subunit biosynthesis
Kidney blood supply
Microvessels pathology
Procollagen-Proline Dioxygenase biosynthesis
Renal Artery Obstruction physiopathology
Swine
Von Hippel-Lindau Tumor Suppressor Protein biosynthesis
Hypertension, Renovascular physiopathology
Microvessels physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1941-7225
- Volume :
- 24
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- American journal of hypertension
- Publication Type :
- Academic Journal
- Accession number :
- 21233798
- Full Text :
- https://doi.org/10.1038/ajh.2010.259