Back to Search Start Over

Obliterative airway remodeling: molecular evidence for shared pathways in transplanted and native lungs.

Authors :
Jonigk D
Merk M
Hussein K
Maegel L
Theophile K
Muth M
Lehmann U
Bockmeyer CL
Mengel M
Gottlieb J
Welte T
Haverich A
Golpon H
Kreipe H
Laenger F
Source :
The American journal of pathology [Am J Pathol] 2011 Feb; Vol. 178 (2), pp. 599-608.
Publication Year :
2011

Abstract

Obliteration of the small airways is a largely unresolved challenge in pulmonary medicine. It represents either the irreversible cause of functional impairment or a morphologic disorder of limited importance in a multitude of diseases. Bronchiolitis obliterans is a key complication of lung transplantation. No predictive markers for the onset of obliterative remodeling are currently available. To further elucidate the molecular mechanisms of airway remodeling, compartment-specific expression patterns were analyzed in patients. For this purpose, remodeled and nonremodeled bronchioli were isolated from transplanted and nontransplanted lung explants using laser-assisted microdissection (n = 24). mRNA expression of 45 fibrosis-associated genes was measured using quantitative real-time RT-PCR. For 20 genes, protein expression was also analyzed by immunohistochemistry. Infiltrating cells were characterized at conventional histology and immunohistochemistry. Obliterative remodeling of the small airways in transplanted and nontransplanted lungs shared similar grades of chronic inflammation and pivotal fibrotic pathways such as transforming growth factor β signaling and increased collagen expression. Bone morphogenetic protein and thrombospondin signaling, and also matrix metalloproteinases and tissue inhibitor of metalloproteinases, were primarily up-regulated in obliterative airway remodeling in nontransplanted lungs. In transplanted lungs, clinical remodeled bone morphogenetic protein but nonremodeled bronchioli were characterized by a concordant up-regulation of matrix metalloproteinase-9, RANTES, and tissue inhibitor of metalloproteinase-1. These distinct expression patterns warrant further investigation as potential markers of impending airway remodeling, especially for prospective longitudinal molecular profiling.<br /> (Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1525-2191
Volume :
178
Issue :
2
Database :
MEDLINE
Journal :
The American journal of pathology
Publication Type :
Academic Journal
Accession number :
21281792
Full Text :
https://doi.org/10.1016/j.ajpath.2010.10.032