Back to Search Start Over

Human Ecstasy use is associated with increased cortical excitability: an fMRI study.

Authors :
Bauernfeind AL
Dietrich MS
Blackford JU
Charboneau EJ
Lillevig JG
Cannistraci CJ
Woodward ND
Cao A
Watkins T
Di Iorio CR
Cascio C
Salomon RM
Cowan RL
Source :
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology [Neuropsychopharmacology] 2011 May; Vol. 36 (6), pp. 1127-41. Date of Electronic Publication: 2011 Feb 16.
Publication Year :
2011

Abstract

The serotonergic neurotoxin, 3,4-methylenedioxymethamphetamine (MDMA/Ecstasy), is a highly popular recreational drug. Human recreational MDMA users have neurocognitive and neuropsychiatric impairments, and human neuroimaging data are consistent with animal reports of serotonin neurotoxicity. However, functional neuroimaging studies have not found consistent effects of MDMA on brain neurophysiology in human users. Several lines of evidence suggest that studying MDMA effects in visual system might reveal the general cortical and subcortical neurophysiological consequences of MDMA use. We used 3 T functional magnetic resonance imaging during visual stimulation to compare visual system lateral geniculate nucleus (LGN) and Brodmann Area (BA) 17 and BA 18 activation in 20 long abstinent (479.95±580.65 days) MDMA users and 20 non-MDMA user controls. Lifetime quantity of MDMA use was strongly positively correlated with blood oxygenation level-dependent (BOLD) signal intensity in bilateral LGN (r(s)=0.59; p=0.007), BA 17 (r(s)=0.50; p=0.027), and BA 18 (r(s)=0.48; p=0.031), and with the spatial extent of activation in BA 17 (r(s)=0.059; p=0.007) and BA 18 (r(s)=0.55; p=0.013). There were no between-group differences in brain activation in any region, but the heaviest MDMA users showed a significantly greater spatial extent of activation than controls in BA 17 (p=0.031) and BA 18 (p=0.049). These results suggest that human recreational MDMA use may be associated with a long-lasting increase in cortical excitability, possibly through loss of serotonin input to cortical and subcortical regions. When considered in the context of previous results, cortical hyper-excitability may be a biomarker for MDMA-induced serotonin neurotoxicity.

Details

Language :
English
ISSN :
1740-634X
Volume :
36
Issue :
6
Database :
MEDLINE
Journal :
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Publication Type :
Academic Journal
Accession number :
21326196
Full Text :
https://doi.org/10.1038/npp.2010.244