Back to Search Start Over

Pharmaceutical micro-particles give amorphous sucrose higher physical stability.

Authors :
Hellrup J
Mahlin D
Source :
International journal of pharmaceutics [Int J Pharm] 2011 May 16; Vol. 409 (1-2), pp. 96-103. Date of Electronic Publication: 2011 Feb 26.
Publication Year :
2011

Abstract

The aim of this study was to explore how pharmaceutical micro-sized filler particles affect the amorphous stability of sucrose in sucrose/filler particle composites produced by freeze-drying. Focus was put on the filler particles' properties crystallinity, hygroscopicity, hydrophobicity, and surface area, and their influence on physical stability of the amorphous phase. The micro-sized filler particles were examined with Blaine permeametry, gas adsorption, pycnometry, gravimetric vapour sorption, X-ray diffraction, and light microscopy before composites of sucrose and micro-sized filler particles were prepared by freeze-drying. The stability of the composites was examined with X-ray diffraction, differential scanning calorimetry (DSC), and microcalorimetry. All composites were amorphous and showed higher stability compared to pure amorphous sucrose, which was evident from a delay in heat and moisture-induced crystallization. However, calcium carbonate and oxazepam micro-sized filler particles lost their ability to stabilize the amorphous sucrose when exposed to humidity. The dry glass transition temperature (T(g)) was higher for the composites, indicating the stabilization was mediated by a reduced molecular mobility of the amorphous phase.<br /> (Copyright © 2011 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3476
Volume :
409
Issue :
1-2
Database :
MEDLINE
Journal :
International journal of pharmaceutics
Publication Type :
Academic Journal
Accession number :
21356288
Full Text :
https://doi.org/10.1016/j.ijpharm.2011.02.031