Back to Search
Start Over
Predicting the outcome of ankylosing spondylitis therapy.
- Source :
-
Annals of the rheumatic diseases [Ann Rheum Dis] 2011 Jun; Vol. 70 (6), pp. 973-81. Date of Electronic Publication: 2011 Mar 14. - Publication Year :
- 2011
-
Abstract
- Objectives: To create a model that provides a potential basis for candidate selection for anti-tumour necrosis factor (TNF) treatment by predicting future outcomes relative to the current disease profile of individual patients with ankylosing spondylitis (AS).<br />Methods: ASSERT and GO-RAISE trial data (n=635) were analysed to identify baseline predictors for various disease-state and disease-activity outcome instruments in AS. Univariate, multivariate, receiver operator characteristic and correlation analyses were performed to select final predictors. Their associations with outcomes were explored. Matrix and algorithm-based prediction models were created using logistic and linear regression, and their accuracies were compared. Numbers needed to treat were calculated to compare the effect size of anti-TNF therapy between the AS matrix subpopulations. Data from registry populations were applied to study how a daily practice AS population is distributed over the prediction model.<br />Results: Age, Bath ankylosing spondylitis functional index (BASFI) score, enthesitis, therapy, C-reactive protein (CRP) and HLA-B27 genotype were identified as predictors. Their associations with each outcome instrument varied. However, the combination of these factors enabled adequate prediction of each outcome studied. The matrix model predicted outcomes as well as algorithm-based models and enabled direct comparison of the effect size of anti-TNF treatment outcome in various subpopulations. The trial populations reflected the daily practice AS population.<br />Conclusion: Age, BASFI, enthesitis, therapy, CRP and HLA-B27 were associated with outcomes in AS. Their combined use enables adequate prediction of outcome resulting from anti-TNF and conventional therapy in various AS subpopulations. This may help guide clinicians in making treatment decisions in daily practice.
- Subjects :
- Adult
Age Factors
Algorithms
Biomarkers blood
C-Reactive Protein metabolism
Epidemiologic Methods
Female
Genetic Predisposition to Disease
Genotype
HLA-B27 Antigen genetics
Humans
Male
Middle Aged
Patient Selection
Prognosis
Spondylitis, Ankylosing blood
Spondylitis, Ankylosing genetics
Treatment Outcome
Antirheumatic Agents therapeutic use
Spondylitis, Ankylosing drug therapy
Tumor Necrosis Factor-alpha antagonists & inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 1468-2060
- Volume :
- 70
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Annals of the rheumatic diseases
- Publication Type :
- Academic Journal
- Accession number :
- 21402563
- Full Text :
- https://doi.org/10.1136/ard.2010.147744