Back to Search Start Over

Function modification of SR-PSOX by point mutations of basic amino acids.

Authors :
Liu W
Yin L
Chen C
Dai Y
Source :
Lipids in health and disease [Lipids Health Dis] 2011 Apr 15; Vol. 10, pp. 59. Date of Electronic Publication: 2011 Apr 15.
Publication Year :
2011

Abstract

Background: Atherosclerosis (AS) is a common cardiovascular disease. Transformation of macrophages to form foam cells by internalizing modified low density-lipoprotein (LDL) via scavenger receptor (SR) is a key pathogenic process in the onset of AS. It has been demonstrated that SR-PSOX functions as either a scavenger receptor for uptake of atherogenic lipoproteins and bacteria or a membrane-anchored chemokine for adhesion of macrophages and T-cells to the endothelium. Therefore, SR-PSOX plays an important role in the development of AS. In this study the key basic amino acids in the chemokine domain of SR-PSOX have been identified for its functions.<br />Results: A cell model to study the functions of SR-PSOX was successfully established. Based on the cell model, a series of mutants of human SR-PSOX were constructed by replacing the single basic amino acid residue in the non-conservative region of the chemokine domain (arginine 62, arginine 78, histidine 80, arginine 82, histidine 85, lysine 105, lysine 119, histidine 123) with alanine (designated as R62A, R78A, H80A, R82A, H85A, K105A, K119A and H123A, respectively). Functional studies showed that the mutants with H80A, H85A, and K105A significantly increased the activities of oxLDL uptake and bacterial phagocytosis compared with the wild-type SR-PSOX. In addition, we have also found that mutagenesis of either of those amino acids strongly reduced the adhesive activity of SR-PSOX by using a highly non-overlapping set of basic amino acid residues.<br />Conclusion: Our study demonstrates that basic amino acid residues in the non-conservative region of the chemokine domain of SR-PSOX are critical for its functions. Mutation of H80, H85, and K105 is responsible for increasing SR-PSOX binding with oxLDL and bacteria. All the basic amino acids in this region are important in the cells adhesion via SR-PSOX. These findings suggest that mutagenesis of the basic amino acids in the chemokine domain of SR-PSOX may contribute to atherogenesis.

Details

Language :
English
ISSN :
1476-511X
Volume :
10
Database :
MEDLINE
Journal :
Lipids in health and disease
Publication Type :
Academic Journal
Accession number :
21492481
Full Text :
https://doi.org/10.1186/1476-511X-10-59