Back to Search Start Over

Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin.

Authors :
Laurent T
Kacem I
Blanchemain N
Cazaux F
Neut C
Hildebrand HF
Martel B
Source :
Acta biomaterialia [Acta Biomater] 2011 Aug; Vol. 7 (8), pp. 3141-9. Date of Electronic Publication: 2011 Apr 27.
Publication Year :
2011

Abstract

The aim of this work was to develop a polypropylene (PP) artificial abdominal wall implant for the prolonged release of ciprofloxacin (CFX). This sustained release effect was obtained by functionalization of the textile mesh with citric acid and hydroxypropyl-γ-cyclodextrin (HPγCD) or maltodextrin (MD). In both cases the textile finishing reaction yielded a cyclo- or malto-dextrin crosslinked polymer coating the fibers. The modified supports were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry and scanning electron microscopy. The sorption capacities and the kinetics of CFX release were studied by batch tests coupled with spectrophotometric assays. Microbiological assays were carried out on Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli, while proliferation and viability tests used fibroblasts. The main results were as follows. (i) Due to the differences between the range of temperature of thermal degradation of the (cyclo)dextrins polymers and of the PP fibers TGA was a reliable method for quantifying the degree of functionalization of the textiles. (ii) Both modified supports showed improved sorption/desorption capacities for CFX, compared with the virgin mesh. The HPγCD-finished support showed an increased sorption capacity and a lower release rate of CFX compared with the MD modified support. (iii) Microbiological assays confirmed the latter result, with greater sustained antibacterial activity of the HPγCD treated support. These experiments have demonstrated the role of the cyclodextrin cavity in interactions with CFX: the antibiotic was not only adsorbed via hydrogen and acid-base interactions with the polyCTR-HPγCD network, but also via host-guest complexation. (iv) Biological tests revealed a slight decrease in fibroblast proliferation after 6 days on the modified supports, but cell viability tests showed that this was not due to toxicity of the (cyclo)dextrin polymer coatings.<br /> (Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1878-7568
Volume :
7
Issue :
8
Database :
MEDLINE
Journal :
Acta biomaterialia
Publication Type :
Academic Journal
Accession number :
21569872
Full Text :
https://doi.org/10.1016/j.actbio.2011.04.020