Back to Search
Start Over
Interstitial flow influences direction of tumor cell migration through competing mechanisms.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2011 Jul 05; Vol. 108 (27), pp. 11115-20. Date of Electronic Publication: 2011 Jun 20. - Publication Year :
- 2011
-
Abstract
- Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial cells, and mesenchymal stem cells. A microfluidic cell culture system was designed to apply stable pressure gradients and fluid flow and allow direct visualization of transient responses of cells seeded in a 3D collagen type I scaffold. We used this system to examine the effects of interstitial flow on cancer cell morphology and migration and to extend previous studies showing that interstitial flow increases the metastatic potential of MDA-MB-435S melanoma cells [Shields J, et al. (2007) Cancer Cell 11:526-538]. Using a breast carcinoma line (MDA-MB-231) we also observed cell migration along streamlines in the presence of flow; however, we further demonstrated that the strength of the flow as well as the cell density determined directional bias of migration along the streamline. In particular, we found that cells either at high seeding density or with the CCR-7 receptor inhibited migration against, rather than with the flow. We provide further evidence that CCR7-dependent autologous chemotaxis is the mechanism that leads to migration with the flow, but also demonstrate a competing CCR7-independent mechanism that causes migration against the flow. Data from experiments investigating the effects of cell concentration, interstitial flow rate, receptor activity, and focal adhesion kinase phosphorylation support our hypothesis that the competing stimulus is integrin mediated. This mechanism may play an important role in development of metastatic disease.
- Subjects :
- Biomedical Engineering
Breast Neoplasms secondary
Cell Count
Cell Line, Tumor
Chemotaxis physiology
Extracellular Fluid physiology
Female
Finite Element Analysis
Focal Adhesion Kinase 1 physiology
Humans
Microfluidic Analytical Techniques
Models, Biological
Neoplasm Metastasis pathology
Neoplasm Metastasis physiopathology
Receptors, CCR7 antagonists & inhibitors
Receptors, CCR7 physiology
Signal Transduction
Breast Neoplasms pathology
Breast Neoplasms physiopathology
Cell Movement physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 108
- Issue :
- 27
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 21690404
- Full Text :
- https://doi.org/10.1073/pnas.1103581108