Back to Search Start Over

Rotundifolone-induced relaxation is mediated by BK(Ca) channel activation and Ca(v) channel inactivation.

Authors :
Silva DF
Araújo IG
Albuquerque JG
Porto DL
Dias KL
Cavalcante KV
Veras RC
Nunes XP
Barbosa-Filho JM
Araújo DA
Cruz JS
Correia NA
De Medeiros IA
Source :
Basic & clinical pharmacology & toxicology [Basic Clin Pharmacol Toxicol] 2011 Dec; Vol. 109 (6), pp. 465-75. Date of Electronic Publication: 2011 Aug 08.
Publication Year :
2011

Abstract

Rotundifolone is the major constituent of the essential oil of Mentha x villosa Hudson. In preliminary studies, rotundifolone induced significant hypotensive, bradycardic and vasorelaxant effects in rats. Thus, to gain more insight into the pharmacology of rotundifolone, the aim of this study was to characterize the molecular mechanism of action involved in relaxation produced by rotundifolone. The relaxant effect was investigated in rat superior mesenteric arteries by using isometric tension measurements and whole-cell patch-clamp techniques. Rotundifolone relaxed phenylephrine-induced contractions in a concentration-dependent manner. Pre-treatment with KCl (20 mM), charybdotoxin (10(-7) M) or tetraethylammonium (TEA 10(-3) or 3 × 10(-3) M) significantly attenuated the relaxation effect induced by rotundifolone. Additionally, whole-cell patch-clamp recordings were made in mesenteric smooth muscle cells and showed that rotundifolone significantly increased K(+) currents, and this effect was abolished by TEA (10(-3)  M), suggesting the participation of BK(Ca) channels. Furthermore, rotundifolone inhibited the vasoconstriction induced by CaCl(2) in depolarizing nominally Ca(2+) -free medium and antagonized the contractions elicited by an L-type Ca(2+) channel agonist, S(-)-Bay K 8644 (2 × 10(-7)  M), indicating that the vasodilatation involved inhibition of Ca(2+) influx through L-type voltage-dependent calcium channels (Ca(v) type-L). Additionally, rotundifolone inhibited L-type Ca(2+) currents (I(Ca) L), affecting the voltage-dependent activation of I(Ca) L and steady-state inactivation. Our findings suggest that rotundifolone induces vasodilatation through two distinct but complementary mechanisms that clearly depend on the concentration range used. Rotundifolone elicits an increase in the current density of BK(Ca) channels and causes a shift in the steady-state inactivation relationship for Ca(v) type-L towards more hyperpolarized membrane potentials.<br /> (© 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.)

Details

Language :
English
ISSN :
1742-7843
Volume :
109
Issue :
6
Database :
MEDLINE
Journal :
Basic & clinical pharmacology & toxicology
Publication Type :
Academic Journal
Accession number :
21726408
Full Text :
https://doi.org/10.1111/j.1742-7843.2011.00749.x