Back to Search Start Over

Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot.

Authors :
Sasaki R
Yamane H
Ooka T
Jotatsu H
Kitamura Y
Akagi T
Tao R
Source :
Plant physiology [Plant Physiol] 2011 Sep; Vol. 157 (1), pp. 485-97. Date of Electronic Publication: 2011 Jul 27.
Publication Year :
2011

Abstract

Bud endodormancy in woody plants plays an important role in their perennial growth cycles. We previously identified a MADS box gene, DORMANCY-ASSOCIATED MADS box6 (PmDAM6), expressed in the endodormant lateral buds of Japanese apricot (Prunus mume), as a candidate for the dormancy-controlling gene. In this study, we demonstrate the growth inhibitory functions of PmDAM6 by overexpressing it in transgenic poplar (Populus tremula × Populus tremuloides). Transgenic poplar plants constitutively expressing PmDAM6 showed growth cessation and terminal bud set under environmental conditions in which control transformants continued shoot tip growth, suggesting the growth inhibitory functions of PmDAM6. In the Japanese apricot genome, we identified six tandemly arrayed PmDAM genes (PmDAM1-PmDAM6) that conserve an amphiphilic repression motif, known to act as a repression domain, at the carboxyl-terminal end, suggesting that they all may act as transcriptional repressors. Seasonal expression analysis and cold treatment in autumn indicated that all PmDAMs were repressed during prolonged cold exposure and maintained at low levels until endodormancy release. Furthermore, PmDAM4 to PmDAM6 responses to a short period of cold exposure appeared to vary between low- and high-chill genotypes. In the high-chill genotype, a short period of cold exposure slightly increased PmDAM4 to PmDAM6 expression, while in the low-chill genotype, the same treatment repressed PmDAM4 to PmDAM6 expression. Furthermore, PmDAM4 to PmDAM6 expression was negatively correlated with endodormancy release. We here discuss the genotype-dependent seasonal expression patterns of PmDAMs in relation to their involvement in endodormancy and variation in chilling requirements.

Details

Language :
English
ISSN :
1532-2548
Volume :
157
Issue :
1
Database :
MEDLINE
Journal :
Plant physiology
Publication Type :
Academic Journal
Accession number :
21795580
Full Text :
https://doi.org/10.1104/pp.111.181982