Back to Search
Start Over
Adaptation of aerobic respiration to low O2 environments.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2011 Aug 23; Vol. 108 (34), pp. 14109-14. Date of Electronic Publication: 2011 Aug 15. - Publication Year :
- 2011
-
Abstract
- Aerobic respiration in bacteria, Archaea, and mitochondria is performed by oxygen reductase members of the heme-copper oxidoreductase superfamily. These enzymes are redox-driven proton pumps which conserve part of the free energy released from oxygen reduction to generate a proton motive force. The oxygen reductases can be divided into three main families based on evolutionary and structural analyses (A-, B- and C-families), with the B- and C-families evolving after the A-family. The A-family utilizes two proton input channels to transfer protons for pumping and chemistry, whereas the B- and C-families require only one. Generally, the B- and C-families also have higher apparent oxygen affinities than the A-family. Here we use whole cell proton pumping measurements to demonstrate differential proton pumping efficiencies between representatives of the A-, B-, and C-oxygen reductase families. The A-family has a coupling stoichiometry of 1 H(+)/e(-), whereas the B- and C-families have coupling stoichiometries of 0.5 H(+)/e(-). The differential proton pumping stoichiometries, along with differences in the structures of the proton-conducting channels, place critical constraints on models of the mechanism of proton pumping. Most significantly, it is proposed that the adaptation of aerobic respiration to low oxygen environments resulted in a concomitant reduction in energy conservation efficiency, with important physiological and ecological consequences.
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 108
- Issue :
- 34
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 21844375
- Full Text :
- https://doi.org/10.1073/pnas.1018958108