Back to Search Start Over

Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of dehalococcoides and desulfovibrio species.

Authors :
Lee LK
Ding C
Yang KL
He J
Source :
Environmental science & technology [Environ Sci Technol] 2011 Oct 01; Vol. 45 (19), pp. 8475-82. Date of Electronic Publication: 2011 Sep 06.
Publication Year :
2011

Abstract

Polybrominated diphenyl ethers (PBDEs) are widespread global contaminants due to their extensive usage as flame retardants. Among the 209 PBDE congeners, tetra-brominated diphenyl ether (tetra-BDE) (congener 47) and penta-BDEs (congeners 99 and 100) are the most abundant, toxic, and bioaccumulative congeners in the environment. However, little is known about microorganisms that carry out debromination of these congeners under anaerobic conditions. In this study, we describe a coculture GY2 consisting of Dehalococcoides and Desulfovibrio spp., which is capable of debrominating ∼1180 nM of congeners 47, 99, and 100 (88-100% removal) to the nonbrominated diphenyl ether at an average rate of 36.9, 19.8, and 21.9 nM day(-1), respectively. Ortho bromines are preferentially removed during the debromination process. The growth of Dehalococcoides links tightly with PBDE debromination, with an estimated growth yield of 1.99 × 10(14) cells per mole of bromide released, while the growth of Desulfovibrio could be independent of PBDEs. The growth-coupled debromination suggests that Dehalococcoides cells in the coculture GY2 are able to respire on PBDEs. Given the ubiquity and recalcitrance of the tetra- and penta-BDEs, complete debromination of these congeners to less toxic end products (e.g. diphenyl ether) is important for the restoration of PBDE-contaminated environments.

Details

Language :
English
ISSN :
1520-5851
Volume :
45
Issue :
19
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
21859110
Full Text :
https://doi.org/10.1021/es201559g