Back to Search Start Over

Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source.

Authors :
Jun H
Kieselbach T
Jönsson LJ
Source :
Microbial cell factories [Microb Cell Fact] 2011 Aug 23; Vol. 10, pp. 68. Date of Electronic Publication: 2011 Aug 23.
Publication Year :
2011

Abstract

Background: Spent hydrolysates from bioethanolic fermentation processes based on agricultural residues have potential as an abundant and inexpensive source of pentose sugars and acids that could serve as nutrients for industrial enzyme-producing microorganisms, especially filamentous fungi. However, the enzyme mixtures produced in such media are poorly defined. In this study, the secretome of Trichoderma reesei Rut C-30 grown either on a spent hydrolysate model medium (SHMM) or on a lactose-based standard medium (LBSM) was explored using proteomics.<br />Results: Our results show that both the SHMM and LBSM serve as excellent growth media for T. reesei Rut C-30. In total, 52 protein spots on 2-D gels were identified by using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC MS/MS). As expected, a considerable number of the identified proteins were related to the degradation of lignocellulosic biomass. The enzyme production profiles in the two media were similar, but β-glucosidase and β-galactosidase were only produced in LBSM. The main cellobiohydrolases (Cel7A/Cel6A) and endoglucanases (Cel7B/Cel5A) were identified in both media and the cellobiohydrolases, i.e. Cel7A and Cel6A, were the most abundant cellulolytic enzymes. Moreover, both media can also serve as a potent inducer of xylanolytic enzymes. Several key enzymes involved in sugar assimilation and regulation of cellulase formation were identified, and were found to be differentially expressed in the two growth media.<br />Conclusions: This study not only provides a catalogue of the prevalent proteins secreted by T. reesei in the two media, but the results also suggest that production of hydrolytic enzymes using unconventional carbon sources, such as components in spent hydrolysates, deserves further attention in the future.

Details

Language :
English
ISSN :
1475-2859
Volume :
10
Database :
MEDLINE
Journal :
Microbial cell factories
Publication Type :
Academic Journal
Accession number :
21861877
Full Text :
https://doi.org/10.1186/1475-2859-10-68