Back to Search Start Over

Evaluation of absorbed doses in voxel-based and simplified models for small animals.

Authors :
Mohammadi A
Kinase S
Saito K
Source :
Radiation protection dosimetry [Radiat Prot Dosimetry] 2012 Jul; Vol. 150 (3), pp. 283-91. Date of Electronic Publication: 2011 Dec 14.
Publication Year :
2012

Abstract

Internal dosimetry in non-human biota is desirable from the viewpoint of radiation protection of the environment. The International Commission on Radiological Protection (ICRP) proposed Reference Animals and Plants using simplified models, such as ellipsoids and spheres and calculated absorbed fractions (AFs) for whole bodies. In this study, photon and electron AFs in whole bodies of voxel-based rat and frog models have been calculated and compared with AFs in the reference models. It was found that the voxel-based and the reference frog (or rat) models can be consistent for the whole-body AFs within a discrepancy of 25%, as the source was uniformly distributed in the whole body. The specific absorbed fractions (SAFs) and S values were also evaluated in whole bodies and all organs of the voxel-based frog and rat models as the source was distributed in the whole body or skeleton. The results demonstrated that the whole-body SAFs reflect SAFs of all individual organs as the source was uniformly distributed per mass within the whole body by about 30% uncertainties with exceptions for body contour (up to -40%) for both electrons and photons due to enhanced radiation leakages, and for the skeleton for photons only (up to +185%) due to differences in the mass attenuation coefficients. For nuclides such as (90)Y and (90)Sr, which were concentrated in the skeleton, there were large differences between S values in the whole body and those in individual organs, however the whole-body S values for the reference models with the whole body as the source were remarkably similar to those for the voxel-based models with the skeleton as the source, within about 4 and 0.3%, respectively. It can be stated that whole-body SAFs or S values in simplified models without internal organs are not sufficient for accurate internal dosimetry because they do not reflect SAFs or S values of all individual organs as the source was not distributed uniformly in whole body. Thus, voxel-based models would be good candidates for dosimetry in non-human biota if further accuracy in environmental dosimetry is desired.

Details

Language :
English
ISSN :
1742-3406
Volume :
150
Issue :
3
Database :
MEDLINE
Journal :
Radiation protection dosimetry
Publication Type :
Academic Journal
Accession number :
22171096
Full Text :
https://doi.org/10.1093/rpd/ncr419