Back to Search Start Over

Development and validation of clinical prediction models: marginal differences between logistic regression, penalized maximum likelihood estimation, and genetic programming.

Authors :
Janssen KJ
Siccama I
Vergouwe Y
Koffijberg H
Debray TP
Keijzer M
Grobbee DE
Moons KG
Source :
Journal of clinical epidemiology [J Clin Epidemiol] 2012 Apr; Vol. 65 (4), pp. 404-12. Date of Electronic Publication: 2012 Jan 02.
Publication Year :
2012

Abstract

Objective: Many prediction models are developed by multivariable logistic regression. However, there are several alternative methods to develop prediction models. We compared the accuracy of a model that predicts the presence of deep venous thrombosis (DVT) when developed by four different methods.<br />Study Design and Setting: We used the data of 2,086 primary care patients suspected of DVT, which included 21 candidate predictors. The cohort was split into a derivation set (1,668 patients, 329 with DVT) and a validation set (418 patients, 86 with DVT). Also, 100 cross-validations were conducted in the full cohort. The models were developed by logistic regression, logistic regression with shrinkage by bootstrapping techniques, logistic regression with shrinkage by penalized maximum likelihood estimation, and genetic programming. The accuracy of the models was tested by assessing discrimination and calibration.<br />Results: There were only marginal differences in the discrimination and calibration of the models in the validation set and cross-validations.<br />Conclusion: The accuracy measures of the models developed by the four different methods were only slightly different, and the 95% confidence intervals were mostly overlapped. We have shown that models with good predictive accuracy are most likely developed by sensible modeling strategies rather than by complex development methods.<br /> (Copyright © 2012 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1878-5921
Volume :
65
Issue :
4
Database :
MEDLINE
Journal :
Journal of clinical epidemiology
Publication Type :
Academic Journal
Accession number :
22214734
Full Text :
https://doi.org/10.1016/j.jclinepi.2011.08.011