Back to Search
Start Over
Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae.
- Source :
-
PloS one [PLoS One] 2012; Vol. 7 (1), pp. e29700. Date of Electronic Publication: 2012 Jan 03. - Publication Year :
- 2012
-
Abstract
- Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates - e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching.
- Subjects :
- Cell Membrane metabolism
Cell Membrane radiation effects
Chlorophyll Binding Proteins chemistry
Cryptophyta cytology
Cryptophyta metabolism
Hydrogen-Ion Concentration
Kinetics
Photosystem II Protein Complex metabolism
Protein Multimerization radiation effects
Protein Structure, Quaternary
Protons
Substrate Specificity
Xanthophylls metabolism
Chlorophyll Binding Proteins metabolism
Cryptophyta enzymology
Cryptophyta radiation effects
Light adverse effects
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 7
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 22235327
- Full Text :
- https://doi.org/10.1371/journal.pone.0029700