Back to Search Start Over

Enzymatic conversion of ε-hexachlorocyclohexane and a heptachlorocyclohexane isomer, two neglected components of technical hexachlorocyclohexane.

Authors :
Bala K
Geueke B
Miska ME
Rentsch D
Poiger T
Dadhwal M
Lal R
Holliger C
Kohler HP
Source :
Environmental science & technology [Environ Sci Technol] 2012 Apr 03; Vol. 46 (7), pp. 4051-8. Date of Electronic Publication: 2012 Mar 20.
Publication Year :
2012

Abstract

α-, β, γ-, and δ-Hexachlorocyclohexane (HCH), the four major isomers of technical HCH, are susceptible to biotic transformations, whereby only α- and γ-HCH undergo complete mineralization. Nevertheless, LinA and LinB catalyzing HCl elimination and hydrolytic dehalogenations, respectively, as initial steps in the mineralization also convert β- and δ-HCH to a variety of mainly hydroxylated metabolites. In this study, we describe the isolation of two minor components of technical HCH, ε-HCH, and heptachlorocyclohexane (HeCH), and we present data on enzymatic transformations of both compounds by two dehydrochlorinases (LinA1 and LinA2) and a haloalkane dehalogenase (LinB) from Sphingobium indicum B90A. In contrast to reactions with α-, γ-, and δ-HCH, both LinA enzymes converted ε-HCH to a mixture of 1,2,4-, 1,2,3-, and 1,3,5-trichlorobenzenes without the accumulation of pentachlorocyclohexene as intermediate. Furthermore, both LinA enzymes were able to convert HeCH to a mixture of 1,2,3,4- and 1,2,3,5-tetrachlorobenzene. LinB hydroxylated ε-HCH to pentachlorocyclohexanol and tetrachlorocyclohexane-1,4-diol, whereas hexachlorocyclohexanol was the sole product when HeCH was incubated with LinB. The data clearly indicate that various metabolites are formed from minor components of technical HCH mixtures. Such metabolites will contribute to the overall toxic potential of HCH contaminations and may constitute serious, yet unknown environmental risks and must not be neglected in proper risk assessments.

Details

Language :
English
ISSN :
1520-5851
Volume :
46
Issue :
7
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
22385211
Full Text :
https://doi.org/10.1021/es204143x