Back to Search Start Over

A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella.

Authors :
Marritt SJ
Lowe TG
Bye J
McMillan DG
Shi L
Fredrickson J
Zachara J
Richardson DJ
Cheesman MR
Jeuken LJ
Butt JN
Source :
The Biochemical journal [Biochem J] 2012 Jun 15; Vol. 444 (3), pp. 465-74.
Publication Year :
2012

Abstract

CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H(2)O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately -240 mV) and low-spin (approximately -110, -190 and -265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (E(m) = -80 mV) in the presence of NADH (E(m) = -320 mV) and an NADH-menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.

Details

Language :
English
ISSN :
1470-8728
Volume :
444
Issue :
3
Database :
MEDLINE
Journal :
The Biochemical journal
Publication Type :
Academic Journal
Accession number :
22458729
Full Text :
https://doi.org/10.1042/BJ20120197