Back to Search
Start Over
Interactions of bilastine, a new oral H₁ antihistamine, with human transporter systems.
- Source :
-
Drug and chemical toxicology [Drug Chem Toxicol] 2012 Jun; Vol. 35 Suppl 1, pp. 8-17. - Publication Year :
- 2012
-
Abstract
- Membrane transporters play a significant role in facilitating transmembrane drug movement. For new pharmacological agents, it is important to evaluate potential interactions (e.g., substrate specificity and/or inhibition) with human transporters that may affect their pharmacokinetics, efficacy, or toxicity. Bilastine is a new nonsedating H₁ antihistamine indicated for the treatment of allergic rhinoconjunctivitis and urticaria. The in vitro inhibitory effects of bilastine were assessed on 12 human transporters: four efflux [multidrug resistance protein 1 (MDR1) or P-glycoprotein, breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2), and bile salt export pump) and eight uptake transporters (sodium taurocholate cotransporting polypeptide, organic cation transporter (OCT)1, organic anion transporter (OAT)1, OAT3, OCT2, OATP2B1, OATP1B1, and OATP1B3). Only mild inhibition was found for MDR1-, OCT1-, and OATP2B1-mediated transport of probe substrates at the highest bilastine concentration assayed (300 μM; half-maximal inhibitory concentration: ≥300 μM). Bilastine transport by MDR1, BCRP, OAT1, OAT3, and OCT2 was also investigated in vitro. Only MDR1 active transport of bilastine was relevant, whereas it did not appear to be a substrate of OCT2, OAT1, or OAT3, nor was it transported substantially by BCRP. Drug-drug interactions resulting from bilastine inhibition of drug transporters that would be generally regarded as clinically relevant are unlikely. Additionally, bilastine did not appear to be a substrate of human BCRP, OAT1, OAT3, or OCT2 and thus is not a potential victim of inhibitors of these transporters. On the other hand, based on in vitro evaluation, clinically relevant interactions with MDR1 inhibitors are anticipated.
- Subjects :
- ATP-Binding Cassette Transporters antagonists & inhibitors
ATP-Binding Cassette Transporters genetics
ATP-Binding Cassette Transporters metabolism
Animals
Benzimidazoles adverse effects
Benzimidazoles metabolism
Biological Transport
CHO Cells
Caco-2 Cells
Cell Line
Cell-Free System metabolism
Cricetinae
Cricetulus
Dogs
Drug Evaluation, Preclinical
Histamine H1 Antagonists, Non-Sedating adverse effects
Histamine H1 Antagonists, Non-Sedating metabolism
Humans
Membrane Transport Modulators adverse effects
Membrane Transport Modulators metabolism
Organic Anion Transporters antagonists & inhibitors
Organic Anion Transporters genetics
Organic Anion Transporters metabolism
Osmolar Concentration
Piperidines adverse effects
Piperidines metabolism
Protein Isoforms antagonists & inhibitors
Protein Isoforms genetics
Protein Isoforms metabolism
Recombinant Proteins antagonists & inhibitors
Recombinant Proteins metabolism
Spodoptera
Benzimidazoles pharmacology
Histamine H1 Antagonists, Non-Sedating pharmacology
Membrane Transport Modulators pharmacology
Piperidines pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1525-6014
- Volume :
- 35 Suppl 1
- Database :
- MEDLINE
- Journal :
- Drug and chemical toxicology
- Publication Type :
- Academic Journal
- Accession number :
- 22616811
- Full Text :
- https://doi.org/10.3109/01480545.2012.682653