Back to Search
Start Over
Effect of mass transfer on the oxygen reduction reaction catalyzed by platinum dendrimer encapsulated nanoparticles.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2012 Jul 17; Vol. 109 (29), pp. 11493-7. Date of Electronic Publication: 2012 Jun 04. - Publication Year :
- 2012
-
Abstract
- Here we report on the effect of the mass transfer rate (k(t)) on the oxygen reduction reaction (ORR) catalyzed by Pt dendrimer-encapsulated nanoparticles (DENs) comprised of 147 and 55 atoms (Pt(147) and Pt(55)). The experiments were carried out using a dual-electrode microelectrochemical device, which enables the study of the ORR under high k(t) conditions with simultaneous detection of H(2)O(2). At low k(t) (0.02 to 0.12 cm s(-1)) the effective number of electrons involved in ORR, n(eff), is 3.7 for Pt(147) and 3.4 for Pt(55). As k(t) is increased, the mass-transfer-limited current for the ORR becomes significantly lower than the value predicted by the Levich equation for a 4-electron process regardless of catalyst size. However, the percentage of H(2)O(2) detected remains constant, such that n(eff) barely changes over the entire k(t) range explored (0.02 cm s(-1)). This suggests that mass transfer does not affect n(eff), which has implications for the mechanism of the ORR on Pt nanoparticles. Interestingly, there is a significant difference in n(eff) for the two sizes of Pt DENs (n(eff) = 3.7 and 3.5 for Pt(147) and Pt(55), respectively) that cannot be assigned to mass transfer effects and that we therefore attribute to a particle size effect.
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 109
- Issue :
- 29
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 22665772
- Full Text :
- https://doi.org/10.1073/pnas.1201370109