Back to Search
Start Over
Chemical rescue of the distal histidine mutants of tryptophan 2,3-dioxygenase.
- Source :
-
Journal of the American Chemical Society [J Am Chem Soc] 2012 Jul 25; Vol. 134 (29), pp. 12209-18. Date of Electronic Publication: 2012 Jul 13. - Publication Year :
- 2012
-
Abstract
- Tryptophan 2,3-dioxygenase (TDO) is a heme-dependent enzyme that catalyzes the oxidative degradation of L-tryptophan (L-Trp) to N-formylkynurenine (NFK). A highly conserved histidine residue in the distal heme pocket has attracted great attention in the mechanistic studies of TDO. However, a consensus has not been reached regarding whether and how this distal histidine plays a catalytic role after substrate binding. In this study, three mutant proteins, H72S, H72N, and Q73F were generated to investigate the function of the distal histidine residue in Cupriavidus metallidurans TDO (cmTDO). Spectroscopic characterizations, enzymatic kinetic analysis, and chemical rescue assays were employed to study the biochemical properties of the wild-type enzyme and the mutant proteins. Rapid kinetic methods were utilized to explore the molecular basis for the observed stimulation of catalytic activity by 2-methylimidazole in the His72 variants. The results indicate that the distal histidine plays multiple roles in cmTDO. First, His72 contributes to but is not essential for substrate binding. In addition, it shields the heme center from nonproductive binding of exogenous small ligand molecules (i.e., imidazole and its analogs) via steric hindrance. Most importantly, His72 participates in the subsequent chemical catalytic steps after substrate binding possibly by providing H-bonding interactions to the heme-bound oxygen.
- Subjects :
- Binding Sites
Catalytic Domain
Cupriavidus chemistry
Cupriavidus genetics
Cupriavidus metabolism
Heme metabolism
Histidine chemistry
Imidazoles chemistry
Imidazoles metabolism
Models, Molecular
Mutagenesis, Site-Directed
Mutation
Protein Conformation
Substrate Specificity
Tryptophan Oxygenase chemistry
Cupriavidus enzymology
Histidine genetics
Histidine metabolism
Tryptophan Oxygenase genetics
Tryptophan Oxygenase metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1520-5126
- Volume :
- 134
- Issue :
- 29
- Database :
- MEDLINE
- Journal :
- Journal of the American Chemical Society
- Publication Type :
- Academic Journal
- Accession number :
- 22742206
- Full Text :
- https://doi.org/10.1021/ja304164b