Back to Search
Start Over
Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
- Source :
-
Nature [Nature] 2012 Oct 04; Vol. 490 (7418), pp. 116-20. Date of Electronic Publication: 2012 Aug 12. - Publication Year :
- 2012
-
Abstract
- Burkitt's lymphoma (BL) can often be cured by intensive chemotherapy, but the toxicity of such therapy precludes its use in the elderly and in patients with endemic BL in developing countries, necessitating new strategies. The normal germinal centre B cell is the presumed cell of origin for both BL and diffuse large B-cell lymphoma (DLBCL), yet gene expression analysis suggests that these malignancies may use different oncogenic pathways. BL is subdivided into a sporadic subtype that is diagnosed in developed countries, the Epstein-Barr-virus-associated endemic subtype, and an HIV-associated subtype, but it is unclear whether these subtypes use similar or divergent oncogenic mechanisms. Here we used high-throughput RNA sequencing and RNA interference screening to discover essential regulatory pathways in BL that cooperate with MYC, the defining oncogene of this cancer. In 70% of sporadic BL cases, mutations affecting the transcription factor TCF3 (E2A) or its negative regulator ID3 fostered TCF3 dependency. TCF3 activated the pro-survival phosphatidylinositol-3-OH kinase pathway in BL, in part by augmenting tonic B-cell receptor signalling. In 38% of sporadic BL cases, oncogenic CCND3 mutations produced highly stable cyclin D3 isoforms that drive cell cycle progression. These findings suggest opportunities to improve therapy for patients with BL.
- Subjects :
- Basic Helix-Loop-Helix Transcription Factors antagonists & inhibitors
Basic Helix-Loop-Helix Transcription Factors genetics
Basic Helix-Loop-Helix Transcription Factors metabolism
Burkitt Lymphoma metabolism
Burkitt Lymphoma pathology
Cell Cycle
Cyclin D3 genetics
Cyclin D3 metabolism
Cyclin-Dependent Kinase 6 metabolism
Genes, myc genetics
High-Throughput Nucleotide Sequencing
Humans
Inhibitor of Differentiation Proteins genetics
Inhibitor of Differentiation Proteins metabolism
Neoplasm Proteins genetics
Neoplasm Proteins metabolism
Phosphatidylinositol 3-Kinases metabolism
RNA Interference
Receptors, Antigen, B-Cell metabolism
Signal Transduction
Burkitt Lymphoma drug therapy
Burkitt Lymphoma genetics
Genomics
Molecular Targeted Therapy
Subjects
Details
- Language :
- English
- ISSN :
- 1476-4687
- Volume :
- 490
- Issue :
- 7418
- Database :
- MEDLINE
- Journal :
- Nature
- Publication Type :
- Academic Journal
- Accession number :
- 22885699
- Full Text :
- https://doi.org/10.1038/nature11378