Back to Search Start Over

Physical training prevents oxidative stress in L-NAME-induced hypertension rats.

Authors :
Cardoso AM
Martins CC
Fiorin Fda S
Schmatz R
Abdalla FH
Gutierres J
Zanini D
Fiorenza AM
Stefanello N
Serres JD
Carvalho F
Castro VP
Mazzanti CM
Royes LF
Belló-Klein A
Goularte JF
Morsch VM
Bagatini MD
Schetinger MR
Source :
Cell biochemistry and function [Cell Biochem Funct] 2013 Mar; Vol. 31 (2), pp. 136-51. Date of Electronic Publication: 2012 Sep 07.
Publication Year :
2013

Abstract

The present study investigated the effects of a 6-week swimming training on blood pressure, nitric oxide (NO) levels and oxidative stress parameters such as protein and lipid oxidation, antioxidant enzyme activity and endogenous non-enzymatic antioxidant content in kidney and circulating fluids, as well as on serum biochemical parameters (cholesterol, triglycerides, urea and creatinine) from Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertension treated rats. Animals were divided into four groups (n = 10): Control, Exercise, L-NAME and Exercise L-NAME. Results showed that exercise prevented a decrease in NO levels in hypertensive rats (P < 0·05). An increase in protein and lipid oxidation observed in the L-NAME-treated group was reverted by physical training in serum from the Exercise L-NAME group (P < 0·05). A decrease in the catalase (CAT) and superoxide dismutase (SOD) activities in the L-NAME group was observed when compared with normotensive groups (P < 0·05). In kidney, exercise significantly augmented the CAT and SOD activities in the Exercise L-NAME group when compared with the L-NAME group (P < 0·05). There was a decrease in the non-protein thiols (NPSH) levels in the L-NAME-treated group when compared with the normotensive groups (P < 0·05). In the Exercise L-NAME group, there was an increase in NPSH levels when compared with the L-NAME group (P < 0·05). The elevation in serum cholesterol, triglycerides, urea and creatinine levels observed in the L-NAME group were reverted to levels close to normal by exercise in the Exercise L-NAME group (P < 0·05). Exercise training had hypotensive effect, reducing blood pressure in the Exercise L-NAME group (P < 0·05). These findings suggest that physical training could have a protector effect against oxidative damage and renal injury caused by hypertension.<br /> (Copyright © 2012 John Wiley & Sons, Ltd.)

Details

Language :
English
ISSN :
1099-0844
Volume :
31
Issue :
2
Database :
MEDLINE
Journal :
Cell biochemistry and function
Publication Type :
Academic Journal
Accession number :
22961602
Full Text :
https://doi.org/10.1002/cbf.2868