Back to Search
Start Over
The NF-κB subunit RelA/p65 is dispensable for successful liver regeneration after partial hepatectomy in mice.
- Source :
-
PloS one [PLoS One] 2012; Vol. 7 (10), pp. e46469. Date of Electronic Publication: 2012 Oct 01. - Publication Year :
- 2012
-
Abstract
- Background: The transcription factor NF-κB consisting of the subunits RelA/p65 and p50 is known to be quickly activated after partial hepatectomy (PH), the functional relevance of which is still a matter of debate. Current concepts suggest that activation of NF-κB is especially critical in non-parenchymal cells to produce cytokines (TNF, IL-6) to adequately prime hepatocytes to proliferate after PH, while NF-κB within hepatocytes mainly bears cytoprotective functions.<br />Methods: To study the role of the NF-κB pathway in different liver cell compartments, we generated conditional knockout mice in which the transactivating NF-κB subunit RelA/p65 can be inactivated specifically in hepatocytes (Rela(F/F)AlbCre) or both in hepatocytes plus non-parenchymal cells including Kupffer cells (Rela(F/F)MxCre). 2/3 and 80% PH were performed in controls (Rela(F/F)) and conditional knockout mice (Rela(F/F)AlbCre and Rela(F/F)MxCre) and analyzed for regeneration.<br />Results: Hepatocyte-specific deletion of RelA/p65 in Rela(F/F)AlbCre mice resulted in an accelerated cell cycle progression without altering liver mass regeneration after 2/3 PH. Surprisingly, hepatocyte apoptosis or liver damage were not enhanced in Rela(F/F)AlbCre mice, even when performing 80% PH. The additional inactivation of RelA/p65 in non-parenchymal cells in Rela(F/F)MxCre mice reversed the small proliferative advantage observed after hepatocyte-specific deletion of RelA/p65 so that Rela(F/F)MxCre mice displayed normal cell cycle progression, DNA-synthesis and liver mass regeneration.<br />Conclusion: The NF-κB subunit RelA/p65 fulfills opposite functions in different liver cell compartments in liver regeneration after PH. However, the effects observed after conditional deletion of RelA/p65 are small and do not alter liver mass regeneration after PH. We therefore do not consider RelA/p65-containing canonical NF-κB signalling to be essential for successful liver regeneration after PH.
- Subjects :
- Animals
Cell Cycle physiology
Electrophoretic Mobility Shift Assay
Hepatocytes physiology
Immunoblotting
Kupffer Cells metabolism
Mice
Mice, Knockout
Real-Time Polymerase Chain Reaction
Transcription Factor RelA genetics
Hepatectomy
Hepatocytes metabolism
Liver Regeneration physiology
Transcription Factor RelA metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 7
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 23049704
- Full Text :
- https://doi.org/10.1371/journal.pone.0046469