Back to Search
Start Over
DNA barcoding of Northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits.
- Source :
-
BMC ecology [BMC Ecol] 2012 Nov 23; Vol. 12, pp. 24. Date of Electronic Publication: 2012 Nov 23. - Publication Year :
- 2012
-
Abstract
- Background: Various methods have been proposed to assign unknown specimens to known species using their DNA barcodes, while others have focused on using genetic divergence thresholds to estimate "species" diversity for a taxon, without a well-developed taxonomy and/or an extensive reference library of DNA barcodes. The major goals of the present work were to: a) conduct the largest species-level barcoding study of the Muscidae to date and characterize the range of genetic divergence values in the northern Nearctic fauna; b) evaluate the correspondence between morphospecies and barcode groupings defined using both clustering-based and threshold-based approaches; and c) use the reference library produced to address taxonomic issues.<br />Results: Our data set included 1114 individuals and their COI sequences (951 from Churchill, Manitoba), representing 160 morphologically-determined species from 25 genera, covering 89% of the known fauna of Churchill and 23% of the Nearctic fauna. Following an iterative process through which all specimens belonging to taxa with anomalous divergence values and/or monophyly issues were re-examined, identity was modified for 9 taxa, including the reinstatement of Phaonia luteva (Walker) stat. nov. as a species distinct from Phaonia errans (Meigen). In the post-reassessment data set, no distinct gap was found between maximum pairwise intraspecific distances (range 0.00-3.01%) and minimum interspecific distances (range: 0.77-11.33%). Nevertheless, using a clustering-based approach, all individuals within 98% of species grouped with their conspecifics with high (>95%) bootstrap support; in contrast, a maximum species discrimination rate of 90% was obtained at the optimal threshold of 1.2%. DNA barcoding enabled the determination of females from 5 ambiguous species pairs and confirmed that 16 morphospecies were genetically distinct from named taxa. There were morphological differences among all distinct genetic clusters; thus, no cases of cryptic species were detected.<br />Conclusions: Our findings reveal the great utility of building a well-populated, species-level reference barcode database against which to compare unknowns. When such a library is unavailable, it is still possible to obtain a fairly accurate (within ~10%) rapid assessment of species richness based upon a barcode divergence threshold alone, but this approach is most accurate when the threshold is tuned to a particular taxon.
Details
- Language :
- English
- ISSN :
- 1472-6785
- Volume :
- 12
- Database :
- MEDLINE
- Journal :
- BMC ecology
- Publication Type :
- Academic Journal
- Accession number :
- 23173946
- Full Text :
- https://doi.org/10.1186/1472-6785-12-24