Back to Search Start Over

Possible effects of dietary polyphenols on sugar absorption and digestion.

Authors :
Williamson G
Source :
Molecular nutrition & food research [Mol Nutr Food Res] 2013 Jan; Vol. 57 (1), pp. 48-57. Date of Electronic Publication: 2012 Nov 26.
Publication Year :
2013

Abstract

Excessive post-prandial glucose excursions are a risk factor for developing diabetes, associated with impaired glucose tolerance. One way to limit the excursion is to inhibit the activity of digestive enzymes for glucose production and of the transporters responsible for glucose absorption. Flavonols, theaflavins, gallate esters, 5-caffeoylqunic acid and proanthocyanidins inhibit α-amylase activity. Anthocyanidins and catechin oxidation products, such as theaflavins and theasinsensins, inhibit maltase; sucrase is less strongly inhibited but anthocyanidins seem somewhat effective. Lactase is inhibited by green tea catechins. Once produced in the gut by digestion, glucose is absorbed by SGLT1 and GLUT2 transporters, inhibited by flavonols and flavonol glycosides, phlorizin and green tea catechins. These in vitro data are supported by oral glucose tolerance tests on animals, and by a limited number of human intervention studies on polyphenol-rich foods. Acarbose is a drug whose mechanism of action is only through inhibition of α-amylases and α-glucosidases, and in intervention studies gives a 6% reduction in diabetes risk over 3 years. A lifetime intake of dietary polyphenols, assuming the same mechanism, has therefore a comparable potential to reduce diabetes risk, but more in vivo studies are required to fully test the effect of modulating post-prandial blood glucose in humans.<br /> (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1613-4133
Volume :
57
Issue :
1
Database :
MEDLINE
Journal :
Molecular nutrition & food research
Publication Type :
Academic Journal
Accession number :
23180627
Full Text :
https://doi.org/10.1002/mnfr.201200511