Back to Search Start Over

Testing for natural selection in human exonic splicing regulators associated with evolutionary rate shifts.

Authors :
Ramalho RF
Gelfman S
de Souza JE
Ast G
de Souza SJ
Meyer D
Source :
Journal of molecular evolution [J Mol Evol] 2013 Apr; Vol. 76 (4), pp. 228-39. Date of Electronic Publication: 2013 Mar 26.
Publication Year :
2013

Abstract

Despite evidence that at the interspecific scale, exonic splicing silencers (ESSs) are under negative selection in constitutive exons, little is known about the effects of slightly deleterious polymorphisms on these splicing regulators. Through the application of a modified version of the McDonald-Kreitman test, we compared the normalized proportions of human polymorphisms and human/rhesus substitutions affecting exonic splicing regulators (ESRs) on sequences of constitutive and alternative exons. Our results show a depletion of substitutions and an enrichment of SNPs associated with ESS gain in constitutive exons. Moreover, we show that this evolutionary pattern is also present in a set of ESRs previously involved in the transition from constitutive to skipped exons in the mammalian lineage. The similarity between these two sets of ESRs suggests that the transition from constitutive to skipped exons in mammals is more frequently associated with the inhibition than with the promotion of splicing signals. This is in accordance with the hypothesis of a constitutive origin of exon skipping and corroborates previous findings about the antagonistic role of certain exonic splicing enhancers.

Details

Language :
English
ISSN :
1432-1432
Volume :
76
Issue :
4
Database :
MEDLINE
Journal :
Journal of molecular evolution
Publication Type :
Academic Journal
Accession number :
23529588
Full Text :
https://doi.org/10.1007/s00239-013-9555-2