Back to Search
Start Over
Synergistic anticancer activity of arsenic trioxide with erlotinib is based on inhibition of EGFR-mediated DNA double-strand break repair.
- Source :
-
Molecular cancer therapeutics [Mol Cancer Ther] 2013 Jun; Vol. 12 (6), pp. 1073-84. Date of Electronic Publication: 2013 Apr 02. - Publication Year :
- 2013
-
Abstract
- Arsenic trioxide (ATO), one of the oldest remedies used in traditional medicine, was recently rediscovered as an anticancer drug and approved for treatment of relapsed acute promyelocytic leukemia. However, its activity against nonhematologic cancers is rather limited so far. Here, we show that inhibition of ATO-mediated EGF receptor (EGFR) activation can be used to potently sensitize diverse solid cancer types against ATO. Thus, combination of ATO and the EGFR inhibitor erlotinib exerted synergistic activity against multiple cancer cell lines. Subsequent analyses revealed that this effect was based on the blockade of ATO-induced EGFR phosphorylation leading to more pronounced G2-M arrest as well as enhanced and more rapid induction of apoptosis. Comparable ATO-sensitizing effects were also found with PI3K/AKT and mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitors, suggesting an essential role of the EGFR-mediated downstream signaling pathway in cancer cell protection against ATO. H2AX staining and comet assay revealed that erlotinib significantly increases ATO-induced DNA double-strand breaks (DSB) well in accordance with a role of the EGFR signaling axis in DNA damage repair. Indeed, EGFR inhibition led to downregulation of several DNA DSB repair proteins such as Rad51 and Rad50 as well as reduced phosphorylation of BRCA1. Finally, the combination treatment of ATO and erlotinib was also distinctly superior to both monotreatments against the notoriously therapy-resistant human A549 lung cancer and the orthotopic p31 mesothelioma xenograft model in vivo. In conclusion, this study suggests that combination of ATO and EGFR inhibitors is a promising therapeutic strategy against various solid tumors harboring wild-type EGFR.<br /> (©2013 AACR)
- Subjects :
- Acid Anhydride Hydrolases
Animals
Arsenic Trioxide
BRCA1 Protein biosynthesis
DNA Breaks, Double-Stranded drug effects
DNA Repair drug effects
DNA Repair genetics
DNA Repair Enzymes biosynthesis
DNA-Binding Proteins biosynthesis
Drug Synergism
ErbB Receptors antagonists & inhibitors
ErbB Receptors metabolism
Erlotinib Hydrochloride
Gene Expression Regulation, Neoplastic drug effects
Humans
Mice
Neoplasms drug therapy
Neoplasms pathology
Phosphorylation drug effects
Rad51 Recombinase biosynthesis
Signal Transduction drug effects
Signal Transduction genetics
Xenograft Model Antitumor Assays
Arsenicals pharmacology
ErbB Receptors genetics
Neoplasms genetics
Oxides pharmacology
Quinazolines pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1538-8514
- Volume :
- 12
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Molecular cancer therapeutics
- Publication Type :
- Academic Journal
- Accession number :
- 23548265
- Full Text :
- https://doi.org/10.1158/1535-7163.MCT-13-0065