Back to Search
Start Over
Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation.
- Source :
-
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2013 May 01; Vol. 190 (9), pp. 4795-804. Date of Electronic Publication: 2013 Apr 03. - Publication Year :
- 2013
-
Abstract
- Mucosal inflammation in conditions ranging from infective acute enteritis or colitis to inflammatory bowel disease is accompanied by alteration in serotonin (5-hydroxytryptamine [5-HT]) content in the gut. Recently, we have identified an important role of 5-HT in the pathogenesis of experimental colitis. 5-HT type 7 (5-HT7) receptor is one of the most recently identified members of the 5-HT receptor family, and dendritic cells express this receptor. In this study, we investigated the effect of blocking 5-HT7 receptor signaling in experimental colitis with a view to develop an improved therapeutic strategy in intestinal inflammatory disorders. Colitis was induced with dextran sulfate sodium (DSS) or dinitrobenzene sulfonic acid (DNBS) in mice treated with selective 5-HT7 receptor antagonist SB-269970, as well as in mice lacking 5-HT7 receptor (5-HT7(-/-)) and irradiated wild-type mice reconstituted with bone marrow cells harvested from 5-HT7(-/-) mice. Inhibition of 5-HT7 receptor signaling with SB-269970 ameliorated both acute and chronic colitis induced by DSS. Treatment with SB-269970 resulted in lower clinical disease, histological damage, and proinflammatory cytokine levels compared with vehicle-treated mice post-DSS. Colitis severity was significantly lower in 5-HT7(-/-) mice and in mice reconstituted with bone marrow cells from 5-HT7(-/-) mice compared with control mice after DSS colitis. 5-HT7(-/-) mice also had significantly reduced DNBS-induced colitis. These observations provide us with novel information on the critical role of the 5-HT7 receptor in immune response and inflammation in the gut, and highlight the potential benefit of targeting this receptor to alleviate the severity of intestinal inflammatory disorders such as inflammatory bowel disease.
- Subjects :
- Animals
Benzenesulfonates pharmacology
Colitis chemically induced
Colitis immunology
Colitis metabolism
Dendritic Cells drug effects
Dendritic Cells immunology
Dendritic Cells metabolism
Dextran Sulfate pharmacology
Disease Models, Animal
Inflammation chemically induced
Intestines drug effects
Male
Mice
Mice, Inbred C57BL
NF-kappa B immunology
NF-kappa B metabolism
Inflammation immunology
Inflammation metabolism
Intestinal Mucosa metabolism
Intestines immunology
Receptors, Serotonin immunology
Receptors, Serotonin metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1550-6606
- Volume :
- 190
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Journal of immunology (Baltimore, Md. : 1950)
- Publication Type :
- Academic Journal
- Accession number :
- 23554310
- Full Text :
- https://doi.org/10.4049/jimmunol.1201887