Back to Search
Start Over
Crosstalk between Helicobacter pylori and gastric epithelial cells is impaired by docosahexaenoic acid.
- Source :
-
PloS one [PLoS One] 2013; Vol. 8 (4), pp. e60657. Date of Electronic Publication: 2013 Apr 05. - Publication Year :
- 2013
-
Abstract
- H. pylori colonizes half of the world's population leading to gastritis, ulcers and gastric cancer. H. pylori strains resistant to antibiotics are increasing which raises the need for alternative therapeutic approaches. Docosahexaenoic acid (DHA) has been shown to decrease H. pylori growth and its associated-inflammation through mechanisms poorly characterized. We aimed to explore DHA action on H. pylori-mediated inflammation and adhesion to gastric epithelial cells (AGS) and also to identify bacterial structures affected by DHA. H. pylori growth and metabolism was assessed in liquid cultures. Bacterial adhesion to AGS cells was visualized by transmission electron microscopy and quantified by an Enzyme Linked Immunosorbent Assay. Inflammatory proteins were assessed by immunoblotting in infected AGS cells, previously treated with DHA. Bacterial total and outer membrane protein composition was analyzed by 2-dimensional gel electrophoresis. Concentrations of 100 µM of DHA decreased H. pylori growth, whereas concentrations higher than 250 µM irreversibly inhibited bacteria survival. DHA reduced ATP production and adhesion to AGS cells. AGS cells infected with DHA pre-treated H. pylori showed a 3-fold reduction in Interleukin-8 (IL-8) production and a decrease of COX2 and iNOS. 2D electrophoresis analysis revealed that DHA changed the expression of H. pylori outer membrane proteins associated with stress response and metabolism and modified bacterial lipopolysaccharide phenotype. As conclusions our results show that DHA anti-H. pylori effects are associated with changes of bacteria morphology and metabolism, and with alteration of outer membrane proteins composition, that ultimately reduce the adhesion of bacteria and the burden of H. pylori-related inflammation.
- Subjects :
- Anti-Inflammatory Agents therapeutic use
Bacterial Adhesion drug effects
Bacterial Outer Membrane Proteins metabolism
Cell Wall drug effects
Cell Wall metabolism
Docosahexaenoic Acids therapeutic use
Epithelial Cells drug effects
Helicobacter pylori cytology
Helicobacter pylori growth & development
Inflammation drug therapy
Inflammation microbiology
Anti-Inflammatory Agents pharmacology
Docosahexaenoic Acids pharmacology
Epithelial Cells microbiology
Helicobacter pylori drug effects
Helicobacter pylori physiology
Stomach cytology
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 8
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 23577140
- Full Text :
- https://doi.org/10.1371/journal.pone.0060657