Back to Search
Start Over
Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials.
- Source :
-
ACS nano [ACS Nano] 2013 Jun 25; Vol. 7 (6), pp. 4855-68. Date of Electronic Publication: 2013 May 23. - Publication Year :
- 2013
-
Abstract
- The study of the chemical and biological properties of CeO2 nanoparticles (CNPs) has expanded recently due to its therapeutic potential, and the methods used to synthesize these materials are diverse. Moreover, conflicting reports exist regarding the toxicity of CNPs. To help resolve these discrepancies, we must first determine whether CNPs made by different methods are similar or different in their physicochemical and catalytic properties. In this paper, we have synthesized several forms of CNPs using identical precursors through a wet chemical process but using different oxidizer/reducer; H2O2 (CNP1), NH4OH (CNP2), or hexamethylenetetramine (HMT-CNP1). Physicochemical properties of these CNPs were extensively studied and found to be different depending on the preparation methods. Unlike CNP1 and CNP2, HMT-CNP1 was readily taken into endothelial cells and the aggregation can be visualized using light microscopy. Exposure to HMT-CNP1 also reduced cell viability at a 10-fold lower concentration than CNP1 or CNP2. Surprisingly, exposure to HMT-CNP1 led to substantial decreases in ATP levels. Mechanistic studies revealed that HMT-CNP1 exhibited substantial ATPase (phosphatase) activity. Though CNP2 also exhibits ATPase activity, CNP1 lacked ATPase activity. The difference in catalytic (ATPase) activity of different CNPs preparation may be due to differences in their morphology and oxygen extraction energy. These results suggest that the combination of increased uptake and ATPase activity of HMT-CNP1 may underlie the biomechanism of the toxicity of this preparation of CNPs and may suggest that ATPase activity should be considered when synthesizing CNPs for use in biomedical applications.
- Subjects :
- Adenosine Triphosphatases metabolism
Adenosine Triphosphate metabolism
Ammonium Hydroxide
Catalysis
Cerium metabolism
Chemical Precipitation
Human Umbilical Vein Endothelial Cells cytology
Human Umbilical Vein Endothelial Cells drug effects
Human Umbilical Vein Endothelial Cells metabolism
Humans
Hydrogen Peroxide chemistry
Hydroxides chemistry
Intracellular Space drug effects
Intracellular Space metabolism
Methenamine chemistry
Oxidation-Reduction
Particle Size
Phosphoric Monoester Hydrolases metabolism
Structure-Activity Relationship
Surface Properties
Water chemistry
Cerium chemistry
Cerium toxicity
Chemical Phenomena
Nanoparticles chemistry
Nanoparticles toxicity
Subjects
Details
- Language :
- English
- ISSN :
- 1936-086X
- Volume :
- 7
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- ACS nano
- Publication Type :
- Academic Journal
- Accession number :
- 23668322
- Full Text :
- https://doi.org/10.1021/nn305872d