Back to Search Start Over

Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production.

Authors :
Basarab JA
Beauchemin KA
Baron VS
Ominski KH
Guan LL
Miller SP
Crowley JJ
Source :
Animal : an international journal of animal bioscience [Animal] 2013 Jun; Vol. 7 Suppl 2, pp. 303-15.
Publication Year :
2013

Abstract

Genetic selection for residual feed intake (RFI) is an indirect approach for reducing enteric methane (CH4) emissions in beef and dairy cattle. RFI is moderately heritable (0.26 to 0.43), moderately repeatable across diets (0.33 to 0.67) and independent of body size and production, and when adjusted for off-test ultrasound backfat thickness (RFI fat) is also independent of body fatness in growing animals. It is highly dependent on accurate measurement of individual animal feed intake. Within-animal repeatability of feed intake is moderate (0.29 to 0.49) with distinctive diurnal patterns associated with cattle type, diet and genotype, necessitating the recording of feed intake for at least 35 days. In addition, direct measurement of enteric CH4 production will likely be more variable and expensive than measuring feed intake and if conducted should be expressed as CH4 production (g/animal per day) adjusted for body size, growth, body composition and dry matter intake (DMI) or as residual CH4 production. A further disadvantage of a direct CH4 phenotype is that the relationships of enteric CH4 production on other economically important traits are largely unknown. Selection for low RFI fat (efficient, -RFI fat) will result in cattle that consume less dry matter (DMI) and have an improved feed conversion ratio (FCR) compared with high RFI fat cattle (inefficient; +RFI fat). Few antagonistic effects have been reported for the relationships of RFI fat on carcass and meat quality, fertility, cow lifetime productivity and adaptability to stress or extensive grazing conditions. Low RFI fat cattle also produce 15% to 25% less enteric CH4 than +RFI fat cattle, since DMI is positively related to enteric methane (CH4) production. In addition, lower DMI and feeding duration and frequency, and a different rumen bacterial profile that improves rumen fermentation in -RFI fat cattle may favor a 1% to 2% improvement in dry matter and CP digestibility compared with +RFI fat cattle. Rate of genetic change using this approach is expected to improve feed efficiency and reduce enteric CH4 emissions from cattle by 0.75% to 1.0% per year at equal levels of body size, growth and body fatness compared with cattle not selected for RFI fat.

Details

Language :
English
ISSN :
1751-732X
Volume :
7 Suppl 2
Database :
MEDLINE
Journal :
Animal : an international journal of animal bioscience
Publication Type :
Academic Journal
Accession number :
23739472
Full Text :
https://doi.org/10.1017/S1751731113000888