Back to Search Start Over

Identification of an osmo-dependent and an osmo-independent choline transporter in Acinetobacter baylyi: implications in osmostress protection and metabolic adaptation.

Authors :
Sand M
Stahl J
Waclawska I
Ziegler C
Averhoff B
Source :
Environmental microbiology [Environ Microbiol] 2014 Jun; Vol. 16 (6), pp. 1490-502. Date of Electronic Publication: 2013 Jul 26.
Publication Year :
2014

Abstract

Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. In previous studies, we have demonstrated that Acinetobacter baylyi ADP1 can cope with high salinities by uptake and accumulation of the well-known compatible solute glycine betaine. Here, we demonstrate that addition of choline restores growth at high salinities. We further show that choline was actively taken up by the cells and converted to glycine betaine. Uptake of choline was induced by high salinity and the presence of choline in the growth medium. At high salinities, glycine betaine was accumulated in the cells whereas in the absence of osmotic stress it was exported. Inspection of the genome sequence followed by mutant studies led to the identification of two genes encoding secondary transporters (BetT1 and BetT2) of the betaine-choline-carnitine transporter (BCCT) family. The BetT1 transporter lacks an extended C-terminal domain usually found in osmoregulated choline BCCTs. BetT1 was found to facilitate osmolarity-independent choline transport most likely by a uniport mechanism. We propose that BetT1 does not primarily function in osmoadaptation but might play a role in metabolic adaptation to choline-rich environments.<br /> (© 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1462-2920
Volume :
16
Issue :
6
Database :
MEDLINE
Journal :
Environmental microbiology
Publication Type :
Academic Journal
Accession number :
23889709
Full Text :
https://doi.org/10.1111/1462-2920.12188