Back to Search Start Over

Functional promoter variants in sphingosine 1-phosphate receptor 3 associate with susceptibility to sepsis-associated acute respiratory distress syndrome.

Authors :
Sun X
Ma SF
Wade MS
Acosta-Herrera M
Villar J
Pino-Yanes M
Zhou T
Liu B
Belvitch P
Moitra J
Han YJ
Machado R
Noth I
Natarajan V
Dudek SM
Jacobson JR
Flores C
Garcia JG
Source :
American journal of physiology. Lung cellular and molecular physiology [Am J Physiol Lung Cell Mol Physiol] 2013 Oct 01; Vol. 305 (7), pp. L467-77. Date of Electronic Publication: 2013 Aug 02.
Publication Year :
2013

Abstract

The genetic mechanisms underlying the susceptibility to acute respiratory distress syndrome (ARDS) are poorly understood. We previously demonstrated that sphingosine 1-phosphate (S1P) and the S1P receptor S1PR3 are intimately involved in lung inflammatory responses and vascular barrier regulation. Furthermore, plasma S1PR3 protein levels were shown to serve as a biomarker of severity in critically ill ARDS patients. This study explores the contribution of single nucleotide polymorphisms (SNPs) of the S1PR3 gene to sepsis-associated ARDS. S1PR3 SNPs were identified by sequencing the entire gene and tagging SNPs selected for case-control association analysis in African- and ED samples from Chicago, with independent replication in a European case-control study of Spanish individuals. Electrophoretic mobility shift assays, luciferase activity assays, and protein immunoassays were utilized to assess the functionality of associated SNPs. A total of 80 variants, including 29 novel SNPs, were identified. Because of limited sample size, conclusive findings could not be drawn in African-descent ARDS subjects; however, significant associations were found for two promoter SNPs (rs7022797 -1899T/G; rs11137480 -1785G/C), across two ED samples supporting the association of alleles -1899G and -1785C with decreased risk for sepsis-associated ARDS. In addition, these alleles significantly reduced transcription factor binding to the S1PR3 promoter; reduced S1PR3 promoter activity, a response particularly striking after TNF-α challenge; and were associated with lower plasma S1PR3 protein levels in ARDS patients. These highly functional studies support S1PR3 as a novel ARDS candidate gene and a potential target for individualized therapy.

Details

Language :
English
ISSN :
1522-1504
Volume :
305
Issue :
7
Database :
MEDLINE
Journal :
American journal of physiology. Lung cellular and molecular physiology
Publication Type :
Academic Journal
Accession number :
23911438
Full Text :
https://doi.org/10.1152/ajplung.00010.2013