Back to Search Start Over

Quaking, an RNA-binding protein, is a critical regulator of vascular smooth muscle cell phenotype.

Authors :
van der Veer EP
de Bruin RG
Kraaijeveld AO
de Vries MR
Bot I
Pera T
Segers FM
Trompet S
van Gils JM
Roeten MK
Beckers CM
van Santbrink PJ
Janssen A
van Solingen C
Swildens J
de Boer HC
Peters EA
Bijkerk R
Rousch M
Doop M
Kuiper J
Schalij MJ
van der Wal AC
Richard S
van Berkel TJ
Pickering JG
Hiemstra PS
Goumans MJ
Rabelink TJ
de Vries AA
Quax PH
Jukema JW
Biessen EA
van Zonneveld AJ
Source :
Circulation research [Circ Res] 2013 Oct 12; Vol. 113 (9), pp. 1065-75. Date of Electronic Publication: 2013 Aug 20.
Publication Year :
2013

Abstract

Rationale: RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown.<br />Objective: We sought to determine the role of QKI in regulating adult VSMC function and plasticity.<br />Methods and Results: We identified that QKI is highly expressed by neointimal VSMCs of human coronary restenotic lesions, but not in healthy vessels. In a mouse model of vascular injury, we observed reduced neointima hyperplasia in Quaking viable mice, which have decreased QKI expression. Concordantly, abrogation of QKI attenuated fibroproliferative properties of VSMCs, while potently inducing contractile apparatus protein expression, rendering noncontractile VSMCs with the capacity to contract. We identified that QKI localizes to the spliceosome, where it interacts with the myocardin pre-mRNA and regulates the splicing of alternative exon 2a. This post-transcriptional event impacts the Myocd_v3/Myocd_v1 mRNA balance and can be modulated by mutating the quaking response element in exon 2a of myocardin. Furthermore, we identified that arterial damage triggers myocardin alternative splicing and is tightly coupled with changes in the expression levels of distinct QKI isoforms.<br />Conclusions: We propose that QKI is a central regulator of VSMC phenotypic plasticity and that intervention in QKI activity can ameliorate pathogenic, fibroproliferative responses to vascular injury.

Details

Language :
English
ISSN :
1524-4571
Volume :
113
Issue :
9
Database :
MEDLINE
Journal :
Circulation research
Publication Type :
Academic Journal
Accession number :
23963726
Full Text :
https://doi.org/10.1161/CIRCRESAHA.113.301302