Back to Search
Start Over
Inhibition of otopathogenic biofilms by organoselenium-coated tympanostomy tubes.
- Source :
-
JAMA otolaryngology-- head & neck surgery [JAMA Otolaryngol Head Neck Surg] 2013 Oct; Vol. 139 (10), pp. 1009-16. - Publication Year :
- 2013
-
Abstract
- Importance: Tube occlusion and post-tympanostomy tube otorrhea (PTTO) are 2 major sequelae of tympanostomy tube placement. Plugging negates the function of the tympanostomy tubes and, along with chronic PTTO, can be financially burdensome owing to repeated surgical procedures and additional treatments.<br />Objective: To investigate the effectiveness of an organoselenium (OSe) coating on Donaldson tympanostomy tubes in inhibiting biofilm formation on the tympanostomy tubes.<br />Design: In vitro microbiologic study; all experiments were performed in a Texas Tech University Health Sciences Center basic sciences laboratory.<br />Interventions: Inhibition of biofilm formation was investigated by incubating OSe-coated vs uncoated (control) tympanostomy tubes in a nutrient broth containing either Staphylococcus aureus (Sa) expressing green fluorescent protein (GFP), nontypeable Haemophilus influenzae (NTHi) expressing GFP, or Moraxella catarrhalis (Mc) for 48 hours at 37 °C. All biofilms were quantified via colony-forming unit (CFU) assays. The Sa and NTHi biofilms were visualized using confocal laser-scanning microscopy (CLSM) and analyzed using the COMSTAT program.<br />Main Outcomes and Measures: The CFU assays, CLSM, and COMSTAT analysis revealed that compared with uncoated control tympanostomy tubes, OSe-coated tympanostomy tubes are able to inhibit Sa, NTHi, and Mc biofilm formation.<br />Results: The Sa and NTHi developed thick mature biofilms containing considerable biomass on uncoated tympanostomy tubes as determined by CLSM and COMSTAT analysis, while the OSe coating on the tympanostomy tubes drastically inhibited biofilm formation by Sa and NTHi. Quantitative CFU analysis revealed that this reduction in biofilm formation was significant, 6 logs for Sa (P < .001) and 4 logs for NTHi (P = .02). OSe coating also inhibited biofilm formation by Mc with a 4.5-log reduction (P < .001).<br />Conclusions and Relevance: The OSe coating is a potential long-lasting agent to prevent biofilm development on tympanostomy tubes by otopathogens.
- Subjects :
- Bacterial Adhesion drug effects
Bacterial Adhesion physiology
Biofilms growth & development
Coated Materials, Biocompatible pharmacology
Equipment Contamination prevention & control
Haemophilus influenzae growth & development
Moraxella catarrhalis growth & development
Staphylococcus aureus growth & development
Biofilms drug effects
Haemophilus influenzae drug effects
Middle Ear Ventilation instrumentation
Moraxella catarrhalis drug effects
Organoselenium Compounds pharmacology
Staphylococcus aureus drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 2168-619X
- Volume :
- 139
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- JAMA otolaryngology-- head & neck surgery
- Publication Type :
- Academic Journal
- Accession number :
- 24030785
- Full Text :
- https://doi.org/10.1001/jamaoto.2013.4690