Back to Search Start Over

Xanthine oxidase mediates hypoxia-inducible factor-2α degradation by intermittent hypoxia.

Authors :
Nanduri J
Vaddi DR
Khan SA
Wang N
Makerenko V
Prabhakar NR
Source :
PloS one [PLoS One] 2013 Oct 04; Vol. 8 (10), pp. e75838. Date of Electronic Publication: 2013 Oct 04 (Print Publication: 2013).
Publication Year :
2013

Abstract

Sleep-disordered breathing with recurrent apnea produces chronic intermittent hypoxia (IH). We previously reported that IH leads to down-regulation of HIF-2α protein via a calpain-dependent signaling pathway resulting in oxidative stress. In the present study, we delineated the signaling pathways associated with calpain-dependent HIF-2α degradation in cell cultures and rats subjected to chronic IH. Reactive oxygen species (ROS) scavengers prevented HIF-2α degradation by IH and ROS mimetic decreased HIF-2α protein levels in rat pheochromocytoma PC12 cell cultures, suggesting that ROS mediate IH-induced HIF-2α degradation. IH activated xanthine oxidase (XO) by increased proteolytic conversion of xanthine dehydrogenase to XO. ROS generated by XO activated calpains, which contributed to HIF-2α degradation by IH. Calpain-induced HIF-2α degradation involves C-terminus but not the N-terminus of the HIF-2α protein. Pharmacological blockade as well as genetic knock down of XO prevented IH induced calpain activation and HIF-2α degradation in PC12 cells. Systemic administration of allopurinol to rats prevented IH-induced hypertension, oxidative stress and XO activation in adrenal medulla. These results demonstrate that ROS generated by XO activation mediates IH-induced HIF-2α degradation via activation of calpains.

Details

Language :
English
ISSN :
1932-6203
Volume :
8
Issue :
10
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
24124516
Full Text :
https://doi.org/10.1371/journal.pone.0075838