Back to Search
Start Over
Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking?
- Source :
-
Laboratory investigation; a journal of technical methods and pathology [Lab Invest] 2014 Jan; Vol. 94 (1), pp. 13-30. Date of Electronic Publication: 2013 Oct 14. - Publication Year :
- 2014
-
Abstract
- Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Details
- Language :
- English
- ISSN :
- 1530-0307
- Volume :
- 94
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Laboratory investigation; a journal of technical methods and pathology
- Publication Type :
- Academic Journal
- Accession number :
- 24126889
- Full Text :
- https://doi.org/10.1038/labinvest.2013.116