Back to Search
Start Over
Structural relationships among LiNaMg[PO4]F and Na2M[PO4]F (M = Mn-Ni, and Mg), and the magnetic structure of LiNaNi[PO4]F.
- Source :
-
Dalton transactions (Cambridge, England : 2003) [Dalton Trans] 2014 Feb 07; Vol. 43 (5), pp. 2044-51. - Publication Year :
- 2014
-
Abstract
- The new compound LiNaMg[PO4]F has been synthesized by a wet chemical reaction route. Its crystal structure was determined from single-crystal X-ray diffraction data. LiNaMg[PO4]F crystallizes with the monoclinic pseudomerohedrally twinned LiNaNi[PO4]F structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) Å, β = 90.00(1)° and Z = 4. The structure contains [MgO3F]n chains made up of zigzag edge-sharing MgO4F2 octahedra. These chains are interlinked by PO4 tetrahedra forming 2D-Mg[PO4]F layers. The alkali metal atoms are well ordered in between these layers over two atomic positions. The use of group-subgroup transformation schemes in the Bärnighausen formalism enabled us to determine precise phase transition mechanisms from LiNaNi[PO4]F- to Na2M[PO4]F-type structures (M = Mn-Ni, and Mg) (see video clip 1 and 2). The crystal and magnetic structure and properties of the parent LiNaNi[PO4]F phase were also studied by magnetometry and neutron powder diffraction. Despite the rather long interlayer distance, d(min)(Ni(+2)-Ni(+2)) ~ 6.8 Å, the material develops a long-range magnetic order below 5 K. The magnetic structure can be viewed as antiferromagnetically coupled ferromagnetic layers with moments parallel to the b-axis.
Details
- Language :
- English
- ISSN :
- 1477-9234
- Volume :
- 43
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Dalton transactions (Cambridge, England : 2003)
- Publication Type :
- Academic Journal
- Accession number :
- 24276233
- Full Text :
- https://doi.org/10.1039/c3dt52587b