Back to Search Start Over

Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

Authors :
Sunagar K
Fry BG
Jackson TN
Casewell NR
Undheim EA
Vidal N
Ali SA
King GF
Vasudevan K
Vasconcelos V
Antunes A
Source :
PloS one [PLoS One] 2013 Nov 29; Vol. 8 (11), pp. e81827. Date of Electronic Publication: 2013 Nov 29 (Print Publication: 2013).
Publication Year :
2013

Abstract

Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

Details

Language :
English
ISSN :
1932-6203
Volume :
8
Issue :
11
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
24312363
Full Text :
https://doi.org/10.1371/journal.pone.0081827