Back to Search Start Over

Comparative proteomics unveils cross species variations in Anabaena under salt stress.

Authors :
Rai S
Agrawal C
Shrivastava AK
Singh PK
Rai LC
Source :
Journal of proteomics [J Proteomics] 2014 Feb 26; Vol. 98, pp. 254-70. Date of Electronic Publication: 2014 Jan 07.
Publication Year :
2014

Abstract

The present study compares protein diversity within three Anabaena species (Anabaena doliolum, Anabaena sp.PCC 7120 and Anabaena L31). 2-DE based analysis of 256 protein spots in control and 1, 3, 5, and 7days of salt treatment resulted into 96 proteins arching across fourteen functional categories were assigned to biochemical pathways using KOBAS 2.0. While 52.34% of the evaluated protein spots were common across three species, the remaining 47.66% fraction mainly comprised of the hypothetical and unknown proteins. PSORTb, CDD, Motifscan and Pfam revealed function and subcellular localization for 27 of the 31 hypothetical and unknown proteins. The differences in high salt tolerance (LC50) of A. doliolum over A. L31 was reflected by (i) many fold accumulation (as spot volumes) of Alr3090, Alr0803, peptidyl prolyl cis-trans isomerase and modulator of DNA gyrase proteins, and (ii) a better photosynthesis and energy homeostasis as indicated through photosystem activity, respiration, ATP and NADPH contents. Some common noteworthy salt effects include (i) photosystem damage, (ii) DNA damage repair, (iii) upregulated protein synthesis, (iv) enhanced sulphur metabolism, and (v) upregulated pentose phosphate pathway. 34 of the identified protein spots are novel entries to the Anabaena salt proteome. This study reveals the existence of separate strategies even within species to combat stress.<br />Biological Significance: This study for the first time enumerates protein diversity in three Anabaena species employing their presence/absence and relative abundance. Proteomics integrated with physiology and bioinformatics deciphers differential salt tolerance among the studied species and is the first of its kind to predict the function of hypothetical and unknown proteins. Salt-induced proteomic alterations clearly demonstrate significant metabolic shifts and existence of separate molecular phenome among the species investigated. This may be responsible for niche specificity limiting their application as biofertilizer. Of the 96 identified proteins, a large chunk are new entries to the Anabaena salt proteome while some protein genes may be used as potential candidates for engineering salt tolerant cyanobacteria.<br /> (Copyright © 2014 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1876-7737
Volume :
98
Database :
MEDLINE
Journal :
Journal of proteomics
Publication Type :
Academic Journal
Accession number :
24406298
Full Text :
https://doi.org/10.1016/j.jprot.2013.12.020