Back to Search
Start Over
The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation.
- Source :
-
BMC genomics [BMC Genomics] 2014 Feb 01; Vol. 15, pp. 92. Date of Electronic Publication: 2014 Feb 01. - Publication Year :
- 2014
-
Abstract
- Background: Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. While these proteins are almost certainly important for gene regulation they have been studied far less than the core histone proteins.<br />Results: Here we describe the genomic distributions and functional roles of two chromatin architectural proteins: histone H1 and the high mobility group protein HMGD1 in Drosophila S2 cells. Using ChIP-seq, biochemical and gene specific approaches, we find that HMGD1 binds to highly accessible regulatory chromatin and active promoters. In contrast, H1 is primarily associated with heterochromatic regions marked with repressive histone marks. We find that the ratio of HMGD1 to H1 binding is a better predictor of gene activity than either protein by itself, which suggests that reciprocal binding between these proteins is important for gene regulation. Using knockdown experiments, we show that HMGD1 and H1 affect the occupancy of the other protein, change nucleosome repeat length and modulate gene expression.<br />Conclusion: Collectively, our data suggest that dynamic and mutually exclusive binding of H1 and HMGD1 to nucleosomes and their linker sequences may control the fluid chromatin structure that is required for transcriptional regulation. This study provides a framework to further study the interplay between chromatin architectural proteins and epigenetics in gene regulation.
- Subjects :
- Animals
Cell Line
Chromatin chemistry
Cluster Analysis
Drosophila metabolism
Drosophila Proteins antagonists & inhibitors
Drosophila Proteins genetics
High Mobility Group Proteins antagonists & inhibitors
High Mobility Group Proteins genetics
Histones antagonists & inhibitors
Histones genetics
Nucleosomes metabolism
Promoter Regions, Genetic
Protein Binding
Protein Processing, Post-Translational
RNA Interference
RNA, Small Interfering metabolism
Transcription Initiation Site
Chromatin metabolism
Drosophila Proteins metabolism
Gene Expression Regulation
High Mobility Group Proteins metabolism
Histones metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1471-2164
- Volume :
- 15
- Database :
- MEDLINE
- Journal :
- BMC genomics
- Publication Type :
- Academic Journal
- Accession number :
- 24484546
- Full Text :
- https://doi.org/10.1186/1471-2164-15-92