Back to Search Start Over

Characterization of [¹²⁵I]GLP-1(9-36), a novel radiolabeled analog of the major metabolite of glucagon-like peptide 1 to a receptor distinct from GLP1-R and function of the peptide in murine aorta.

Authors :
Kuc RE
Maguire JJ
Siew K
Patel S
Derksen DR
Margaret Jackson V
O'Shaughnessey KM
Davenport AP
Source :
Life sciences [Life Sci] 2014 May 02; Vol. 102 (2), pp. 134-8. Date of Electronic Publication: 2014 Mar 15.
Publication Year :
2014

Abstract

Aims: Glucagon-like peptide 1 (GLP-1) is an insulin secretagogue, released in response to meal ingestion and efficiently lowers blood glucose in Type 2 diabetic patients. GLP-1(7-36) is rapidly metabolized by dipeptidyl peptidase IV to the major metabolite GLP-1(9-36)-amide, often thought to be inactive. Inhibitors of this enzyme are widely used to treat diabetes. Our aim was to characterize the binding of GLP-1(9-36) to native mouse tissues and to cells expressing GLP1-R as well as to measure functional responses in the mouse aorta compared with GLP-1(7-36).<br />Main Methods: The affinity of [(125)I]GLP-1(7-36) and [(125)I]GLP-1(9-36) was measured in mouse tissues by saturation binding and autoradiography used to determine receptor distribution. The affinity of both peptides was compared in binding to recombinant GLP-1 receptors using cAMP and scintillation proximity assays. Vasoactivity was determined in mouse aortae in vitro.<br />Key Findings: In cells expressing GLP-1 receptors, GLP-1(7-36) bound with the expected high affinities (0.1 nM) and an EC50 of 0.07 nM in cAMP assays but GLP-1(9-36) bound with 70,000 and 100,000 fold lower affinities respectively. In contrast, in mouse brain, both labeled peptides bound with a single high affinity, with Hill slopes close to unity, although receptor density was an order of magnitude lower for [(125)I]GLP-1(9-36). In functional experiments both peptides had similar potencies, GLP-1(7-36), pD2=7.40 ± 0.24 and GLP-1(9-36), pD2=7.57 ± 0.64.<br />Significance: These results suggest that GLP-1(9-36) binds and has functional activity in the vasculature but these actions may be via a pathway that is distinct from the classical GLP-1 receptor and insulin secretagogue actions.<br /> (Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1879-0631
Volume :
102
Issue :
2
Database :
MEDLINE
Journal :
Life sciences
Publication Type :
Academic Journal
Accession number :
24641952
Full Text :
https://doi.org/10.1016/j.lfs.2014.03.011