Back to Search
Start Over
ATZ11 recognizes not only Z-α1-antitrypsin-polymers and complexed forms of non-Z-α1-antitrypsin but also the von Willebrand factor.
- Source :
-
PloS one [PLoS One] 2014 Mar 19; Vol. 9 (3), pp. e91538. Date of Electronic Publication: 2014 Mar 19 (Print Publication: 2014). - Publication Year :
- 2014
-
Abstract
- Aims: The ATZ11 antibody has been well established for the identification of α1-anti-trypsin (AAT) molecule type PiZ (Z-AAT) in blood samples and liver tissue. In this study, we systematically analyzed the antibody for additional binding sites in human tissue.<br />Methods and Results: Ultrastructural ATZ11 binding was investigated immunoelectron microscopically in human umbilical vein endothelial cells (HUVECs) and in platelets of a healthy individual. Human embryonic kidney (HEK293) cells were transiently transfected with Von Willebrand factor (VWF) and analyzed immunocytochemically using confocal microscopy and SDS-PAGE electrophoresis followed by western blotting (WB). Platelets and serum samples of VWF-competent and VWF-deficient patients were investigated using native PAGE and SDS-PAGE electrophoresis followed by WB. The specificity of the ATZ11 reaction was tested immunohistochemically by extensive antibody-mediated blocking of AAT- and VWF-antigens. ATZ11-positive epitopes could be detected in Weibel-Palade bodies (WPBs) of HUVECs and α-granules of platelets. ATZ11 stains pseudo-WBP containing recombinant wild-type VWF (rVWF-WT) in HEK293 cells. In SDS-PAGE electrophoresis followed by WB, anti-VWF and ATZ11 both identified rVWF-WT. However, neither rVWF-WT-multimers, human VWF-multimers, nor serum proteins of VWF-deficient patients were detected using ATZ11 by WB, whereas anti-VWF antibody (anti-VWF) detected rVWF-WT-multimers as well as human VWF-multimers. In human tissue specimens, AAT-antigen blockade using anti-AAT antibody abolished ATZ11 staining of Z-AAT in a heterozygous AAT-deficient patient, whereas VWF-antigen blockade using anti-VWF abolished ATZ11 staining of endothelial cells and megakaryocytes.<br />Conclusions: ATZ11 reacts with cellular bound and denatured rVWF-WT and human VWF as shown using immunocytochemistry and subsequent confocal imaging, immunoelectron microscopy, SDS-PAGE and WB, and immunohistology. These immunoreactions are independent of the binding of Z-AAT-molecules and non-Z-AAT complexes.
- Subjects :
- Antibodies, Monoclonal immunology
Blood Platelets chemistry
Blood Platelets immunology
Epitopes chemistry
Epitopes immunology
HEK293 Cells
Human Umbilical Vein Endothelial Cells
Humans
Immunohistochemistry
Microscopy, Immunoelectron
Protein Binding
Transfection
Weibel-Palade Bodies chemistry
Weibel-Palade Bodies immunology
alpha 1-Antitrypsin immunology
von Willebrand Factor immunology
Antibodies, Monoclonal chemistry
alpha 1-Antitrypsin chemistry
von Willebrand Factor chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 9
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 24646657
- Full Text :
- https://doi.org/10.1371/journal.pone.0091538