Back to Search
Start Over
Bayesian probability of malignancy with BI-RADS sonographic features.
- Source :
-
Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine [J Ultrasound Med] 2014 Apr; Vol. 33 (4), pp. 641-8. - Publication Year :
- 2014
-
Abstract
- Objectives: The purpose of this study was to develop a quantitative approach for combining individual American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) sonographic features of breast masses for assessing the overall probability of malignancy.<br />Methods: Sonograms of solid breast masses were analyzed by 2 observers blinded to patient age, mammographic features, and lesion pathologic findings. BI-RADS sonographic features were determined by using American College of Radiology criteria. A naïve Bayes model was used to determine the probability of malignancy of all the sonographic features together and with age and BI-RADS mammographic features. The diagnostic performance for various combinations was evaluated by using the area under the receiver operating curve (Az).<br />Results: Sonographic features had high positive and negative predictive values. The Az values for BI-RADS sonographic features for the 2 observers ranged from 0.772 to 0.884, which increased to 0.866 to 0.924 when used with patient age and BI-RADS mammographic features. The benefit of adding age and mammographic information was more marked for the observer with lower initial diagnostic performance. Age-specific analysis showed that diagnostic performance varied with age, with higher performance for patients aged 45 years and younger and patients older than 60 years compared to those aged 46 to 60 years. In 85% of cases, the diagnosis of the observers matched. When the consensus between the observers was used for diagnostic decisions, a high level of diagnostic performance (Az, 0.954) was achieved.<br />Conclusions: A naïve Bayes model provides a systematic approach for combining sonographic features and other patient characteristics for assessing the probability of malignancy to differentiate malignant and benign breast masses.
- Subjects :
- Adult
Aged
Aged, 80 and over
Bayes Theorem
Female
Humans
Image Enhancement methods
Image Enhancement standards
Image Interpretation, Computer-Assisted standards
Middle Aged
Pattern Recognition, Automated standards
Prognosis
Reproducibility of Results
Sensitivity and Specificity
Single-Blind Method
Breast Neoplasms diagnostic imaging
Image Interpretation, Computer-Assisted methods
Pattern Recognition, Automated methods
Practice Guidelines as Topic
Ultrasonography, Mammary methods
Ultrasonography, Mammary standards
Subjects
Details
- Language :
- English
- ISSN :
- 1550-9613
- Volume :
- 33
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
- Publication Type :
- Academic Journal
- Accession number :
- 24658943
- Full Text :
- https://doi.org/10.7863/ultra.33.4.641