Back to Search
Start Over
Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice.
- Source :
-
BMC nephrology [BMC Nephrol] 2014 Apr 04; Vol. 15, pp. 58. Date of Electronic Publication: 2014 Apr 04. - Publication Year :
- 2014
-
Abstract
- Background: Hypertension is a major risk factor for renal disease progression. However, the mechanisms by which hypertension aggravates the effects of diabetes on the kidney are incompletely understood. We tested the hypothesis that renovascular hypertension accelerates angiotensin-II-dependent kidney damage and inflammation in the db/db mouse, a model of type II diabetes.<br />Methods: Renovascular hypertension was established in db/db and wild-type control mice through unilateral renal artery stenosis (RAS); the non-stenotic contralateral kidneys evaluated 2, 4 and 6 weeks later. Angiotensin-II infusion (1000 ng/kg/min), unilateral nephrectomy, or both were also performed in db/db mice to discern the contributions of hypertension versus hyperfiltration to development of chronic renal injury in db/db mice with RAS. The effect of blood pressure reduction in db/db mice with RAS was assessed using angiotensin-receptor-blocker (ARB) or hydralazine treatment.<br />Results: Db/db mice with renovascular hypertension developed greater and more prolonged elevation of renin activity than all other groups studied. Stenotic kidneys of db/db mice developed progressive interstitial fibrosis, tubular atrophy, and interstitial inflammation. Contralateral kidneys of wild type mice with RAS showed minimal histopathologic abnormalities, whereas db/db mice with RAS developed severe diffuse mesangial sclerosis, interstitial fibrosis, tubular atrophy, and interstitial inflammation. Db/db mice with Angiotensin II-induced hypertension developed interstitial lesions and albuminuria but not mesangial matrix expansion, while nephrectomized db/db mice exhibited modest mesangial expansion and interstitial fibrosis, but not significant albuminuria. The combination of unilateral nephrectomy and angiotensin II infusion reproduced all the features of the injury albeit in a less severe manner. ARB and hydralazine were equally effective in attenuating the development of mesangial expansion in the contralateral kidneys of db/db mice with RAS. However, only ARB prevented elevation of urinary albumin/creatinine in db/db mice with RAS.<br />Conclusion: Renovascular hypertension superimposed on diabetes exacerbates development of chronic renal disease in db/db mice at least in part through interaction with the renin-angiotensin system. Both ARB and hydralazine were equally effective in reducing systolic blood pressure and in preventing renal injury in the contralateral kidney of db/db mice with renal artery stenosis. ARB but not hydralazine prevented elevation of urinary albumin/creatinine in the db/db RAS model.
- Subjects :
- Animals
Diabetic Nephropathies complications
Diabetic Nephropathies physiopathology
Glomerular Filtration Rate
Kidney physiopathology
Male
Mice
Mice, Inbred C57BL
Renal Insufficiency, Chronic complications
Diabetes Mellitus, Type 2 complications
Diabetes Mellitus, Type 2 physiopathology
Hypertension, Renovascular etiology
Hypertension, Renovascular physiopathology
Renal Insufficiency, Chronic physiopathology
Renin-Angiotensin System physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1471-2369
- Volume :
- 15
- Database :
- MEDLINE
- Journal :
- BMC nephrology
- Publication Type :
- Academic Journal
- Accession number :
- 24708836
- Full Text :
- https://doi.org/10.1186/1471-2369-15-58