Back to Search Start Over

Nucleotide regulation of the structure and dynamics of G-actin.

Authors :
Saunders MG
Tempkin J
Weare J
Dinner AR
Roux B
Voth GA
Source :
Biophysical journal [Biophys J] 2014 Apr 15; Vol. 106 (8), pp. 1710-20.
Publication Year :
2014

Abstract

Actin, a highly conserved cytoskeletal protein found in all eukaryotic cells, facilitates cell motility and membrane remodeling via a directional polymerization cycle referred to as treadmilling. The nucleotide bound at the core of each actin subunit regulates this process. Although the biochemical kinetics of treadmilling has been well characterized, the atomistic details of how the nucleotide affects polymerization remain to be definitively determined. There is increasing evidence that the nucleotide regulation (and other characteristics) of actin cannot be fully described from the minimum energy structure, but rather depends on a dynamic equilibrium between conformations. In this work we explore the conformational mobility of the actin monomer (G-actin) in a coarse-grained subspace using umbrella sampling to bias all-atom molecular-dynamics simulations along the variables of interest. The results reveal that ADP-bound actin subunits are more conformationally mobile than ATP-bound subunits. We used a multiscale analysis method involving coarse-grained and atomistic representations of these simulations to characterize how the nucleotide affects the low-energy states of these systems. The interface between subdomains SD2-SD4, which is important for polymerization, is stabilized in an actin filament-like (F-actin) conformation in ATP-bound G-actin. Additionally, the nucleotide modulates the conformation of the SD1-SD3 interface, a region involved in the binding of several actin-binding proteins.<br /> (Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1542-0086
Volume :
106
Issue :
8
Database :
MEDLINE
Journal :
Biophysical journal
Publication Type :
Academic Journal
Accession number :
24739170
Full Text :
https://doi.org/10.1016/j.bpj.2014.03.012